Monitoring Report MY05

Cedar Branch Restoration Site Monitoring Year 05 DMS Contract 6598 DMS Project Number 97009 RFP#16-006313 (Issue Date: January 21, 2015)

> DWR #: 20150904 USACE Action ID: 2003-21395 Randolph County, North Carolina

Prepared for: NCDMS, 1652 Mail Service Center, Raleigh, NC 27699-1652

> Monitoring Data Collected: 2022 Date Submitted: January 2023

Monitoring and Design Firm

KCI Associates of North Carolina 4505 Falls of Neuse Road Suite 400 Raleigh, NC 27609 (919) 783-9214

Project Contact: Adam Spiller Email: <u>adam.spiller@kci.com</u>

ENGINEERS • SCIENTISTS • SURVEYORS • CONSTRUCTION MANAGERS 4505 Falls of Neuse Road Suite 400 Raleigh, NC 27609 (919) 783-9214 (919) 783-9266 Fax

MEMORANDUM

Date:	February 8, 2023
То:	Matthew Reid, DMS Project Manager
From:	Adam Spiller, Project Manager KCI Associates of North Carolina, PA
Subject:	Cedar Branch Stream Restoration Site MY-05 Monitoring Report Comments Yadkin River Basin CU 03040103 Randolph County, North Carolina NCDMS Project # 97009 Contract # 006598

Please find below our responses in italics to the MY-05 Monitoring Report comments from NCDMS received on January 25, 2023, for the Cedar Branch Stream Restoration Site.

In an effort to identify and resolve property issues, please verify the conservation easement has been inspected, marking is up to date, fencing is intact, and no encroachments have been identified.

The conservation easement was inspected during the site inspection on December 13, 2022. In addition to one spot where a tree has fallen on the fence (no livestock kept in this area) and some trash in the easement that was noted last year, there is one bale of hay that has rolled into the easement along T4. KCI is working to address all of these issues.

Please provide an update on the following items identified from the DMS MY4 site visit in 2022

- Several Tires, a metal hay bale feeder and concrete blocks were located within the conservation easement at the top of T1. Please verify items have been removed.
- Fence down on the left flood plain near sta: 17+00 due to trees falling. Please verify fence has been repaired.
- These issues were not addressed in 2022 but the fence will be repaired, and the trash and bale of hay will be removed as soon as possible.

Tables 5 and 6: Please include dates that the assessment occurred at the top of each graph.

This change has been made.

Table 6: Invasive Areas of Concern shows 0.5% in the % of Easement Acreage column; however, no data is included in the Number of Polygons and Combined Acreage columns. Please review and revise.

> The 0.5% was included in error. This error has been corrected.

T1, T1-1 and T3 Stream Flow Graphs: Please add the max consecutive day information for both the camera and gauge similar to how the "49 Days" is shown on the T3 stream flow graph.
➤ *This change has been made*.

Sincerely,

Han Sille

Adam Spiller Project Manager

TABLE OF CONTENTS

Project Summary	. 1
Monitoring Results	
Figure 1. Project Site Vicinity Map	
References	

Appendix A – Background Tables

Table 1. Project Components and Mitigation Credits	.7
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts	. 9
Table 4. Project Information	10

<u>Appendix B – Visual Assessment Data</u>

CCPV	. 13
Table 5. Visual Stream Morphology Assessment	. 15
Table 6. Vegetation Condition Assessment	
Photo Reference Points	
Vegetation Plot Photos	. 25
-0	0

Appendix C – Vegetation Plot Data

Appendix D – Stream Measurement and Geomorphology Data

Table 8. Baseline Stream Data Summary	35
Table 9. Cross-section Morphology Data Table	
Cross-section Plots	43

<u>Appendix E – Hydrologic Data</u>

30-70 Percentile Graph	59
Table 10. Verification of Bankfull Events	
Bankfull Verification and Precipitation Plot	61
Table 11. Verification of Stream Flow	
Table 12. Stream Flow Criteria Attainment	62
Stream Flow Example Photos	63
Stream Flow Verification and Precipitation Plots	64
Table 13. Wetland Hydrology Verification	67
Groundwater and Precipitation Plots	

PROJECT SUMMARY

The Cedar Branch Restoration Site (CBRS) was completed in April 2018 and restored a total of 7,047 linear feet of stream. The CBRS is a riparian system in the Lower Yadkin River Basin (03040103 8-digit cataloging unit) in Randolph County, North Carolina. The site's natural hydrologic regime had been substantially modified through the relocation and straightening of the existing stream channels, impacted by cattle access, and cleared of any riparian buffer. This completed project restored impacted agricultural lands to a stable stream ecosystem with a functional riparian buffer and floodplain access.

The CBRS is protected by a 20.6 acre permanent conservation easement, held by the State of North Carolina. The site is located approximately 2.8 miles west of Sophia, North Carolina. Specifically, the site is 0.5 mile west on Mt. Olive Church Road from its intersection with Edgar Road (SR-1526).

The North Carolina Ecosystem Enhancement Program (NCEEP) publication in 2009 identified HUC 03040103050040 (Caraway Creek) as a Targeted Local Watershed (TLW). The project is also located within the Upper Uwharrie Local Watershed Plan (LWP) study area. The goals and priorities for the CBRS are based on the information presented in the Lower Yadkin River Basin Restoration Priorities: maintaining and enhancing water quality, restoring hydrology, and improving fish and wildlife habitat (NCEEP, 2009). The project will support the following basin priorities:

- Managing stormwater runoff
- Reducing fecal coliform inputs
- Improving/restoring riparian buffers
- Reducing sediment loading
- Improving stream stability
- Reducing nutrient loading
- Excluding livestock and implementing other agricultural BMP's

The goals for the project are to:

- Restore channelized and livestock-impacted streams to stable C/Cb channels.
- Restore a forested riparian buffer to provide bank stability, filtration, and shading.

The project goals will be addressed through the following objectives:

- Relocate a channelized stream to its historic landscape position.
- Install cross-sections sized to the bankfull discharge.
- Create bedform diversity with pools, riffles, and habitat structures
- Fence out livestock to reduce nutrient, bacterial, and sediment impacts from adjacent grazing and farming practices.
- Plant the site with native trees and shrubs and an herbaceous seed mix.

To restore the site, the stream was re-meandered and the bankfull elevation was tied to the historic floodplain where feasible. This restoration is expected to create wetland pockets throughout the new floodplain and bankfull bench. The entire site was planted to establish a forested riparian buffer.

The monitoring components were installed in April 2018. Three groundwater monitoring wells were installed to monitor the development of wetlands in the floodplain along the EI portions of T1 and T3. Three automatically recording pressure transducer stream gauges that take a reading every 10 minutes were installed near the top of T1, T1-1, and T3 to document flow within those reaches. Cameras were installed in the vicinity of each of these gauges and set to record a short video once a day to provide additional verification of flow. An additional stream gauge was installed along UTCC to record the occurrence of bankfull events. Thirteen 10 m x 10 m permanent vegetation monitoring plots were established. The locations of the planted stems relative to the origin within these plots, as well as the species, were recorded and planted stems were grouped into size categories (0-10 cm, 10-50 cm, 50-100 cm, >137 cm). Any

volunteers found within the plots were also grouped into size categories by species, but separate from the planted stems. Twelve permanent photo reference points were established and will be taken annually. Fifteen permanent cross-sections (ten riffle cross-sections and five pool cross-sections) were also established and a detailed longitudinal profile of the stream was taken. Wolman pebble counts were performed at all of the riffle cross-sections. The cross-section measurements will be repeated in future monitoring years, but the longitudinal profile will only be repeated if there are concerns about bed elevation adjustments. Reports will be submitted to DMS each year.

Vegetative success criteria for the site is 320 woody stems/acre after three years, 260 woody stems/acre after five years, and 210 woody stems/acre after seven years. A minimum of two bankfull events in separate years must also be recorded during the monitoring period. Bank height ratios should not exceed 1.2 and the entrenchment ratios should be 2.2 or greater. Visual assessments will also be used to identify problem areas.

MONITORING RESULTS

The fifth-year vegetation monitoring was completed on July 19, 2022. The site averaged 697 planted stems/acre across all 13 plots. Twelve of the thirteen plots had greater than 260 planted stems/acre, Including volunteers, the site averaged 794 total stems/acre. A supplemental planting of one hundred bare root stems was completed on January 4, 2022 in the area between T1 and T1A. Due to poorer soil conditions and being located further from the streams than other areas of the site, this area had not seen as vigorous growth as the rest of the site. Twenty-five each of tulip poplar (*Liriodendron tulipifera*), willow oak (*Quercus phellos*), persimmon (*Diospyros virginiana*), and southern red oak (*Quercus falcate*) were planted in this area to address this issue. A treatment of invasive species growing on site was completed in July 2022. This treatment targeted Chinese privet (*Ligustrum sinense*) in areas where preexisting vegetation was not cleared during construction, mainly around the upper reaches of T1. In general the site is well vegetated, with widespread herbaceous coverage and healthy planted stems.

In addition to traditional stream monitoring, there are areas of fringe wetlands that were restored and enhanced along the bankfull benches of some reaches that are monitored for informational purposes. These areas do not have success criteria associated with them, but help illustrate the overall success of the restoration site. According to the Randolph County Soil Survey, the growing season at the CBRS extends from March 24 to November 13 (235 days). Daily rainfall data were obtained from the NC State Climate Office for a local weather station in Asheboro, NC. In 2022, March, April, and July experienced above average rainfall, while May, June, and September experienced average rainfall. The months of January, February, August, October, and November experienced below average rainfall for the site. Overall, the area experienced slightly below average rainfall during the 2022 growing season. During the site's fifth growing season, the groundwater monitoring well on T1 achieved 5 days (1.9%) of continuous saturation within twelve inches of the soil surface, while the two wells on T3 achieved 103 days (44.0%) and 18 days (7.7%). These lower than usual levels of success are due to the low levels of rainfall that the site received in 2022. Several species of hydrophytic vegetation have been noted growing along the floodplains of T1 and T3 in all monitoring years. These species including *Juncus effuses* (FACW), *Cyperus strigosus* (FACW), *Persicaria pensylvanica* (FACW), and *Persicaria sagittata* (OBL).

The stream gauge on UTCC recorded 8 bankfull events in 2022. All 3 of the flow cameras on site recorded at least 30 consecutive days of flow. The camera on T1 recorded 147 consecutive days of flow, while the camera on T1-1 recorded 115 consecutive days of flow. The camera on T3 recorded 173 consecutive days of flow. Due to the low levels of rainfall that the site received, only the stream flow gauge on T3 recorded at least 30 consecutive days of flow in 2022. This gauge recorded 49 consecutive days of flow. The difference in the success rates of the cameras compared to the gauges can be attributed to the fact that the cameras can provide better evidence of stream flow at the low levels of flow that the project streams experienced in 2022.

The fifth year cross-section survey was completed on December 14, 2022. This survey found the stream functioning as designed, with some small variation as is typical for stream restoration projects. There has been a small amount of aggradation in the cross-sections near the top of T1 (XS 1 and 2) and the cross-section near the top of T4 (XS10). This small build-up of sediment is part of the natural movement of sediment through the system and is not a reflection of instability.

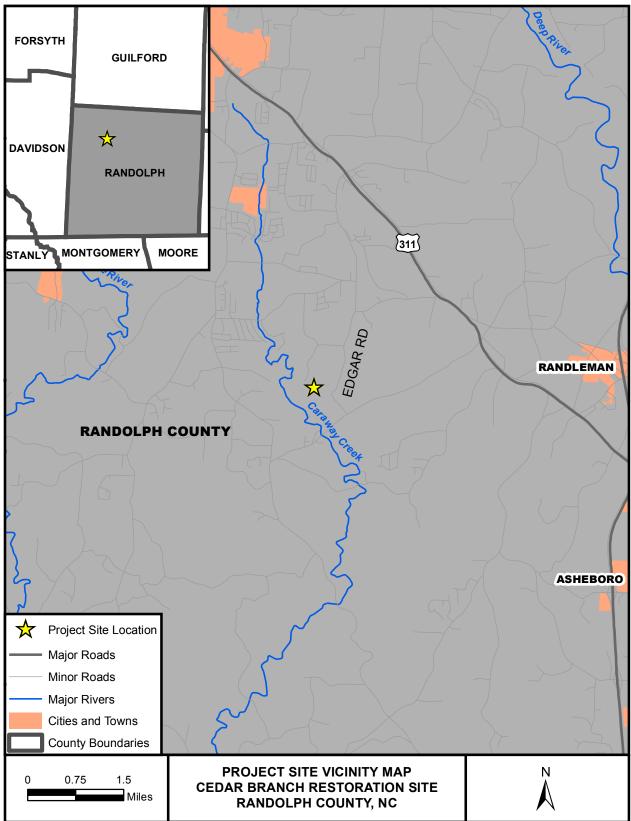


Figure 1. Project Site Vicinity Map

REFERENCES

- NCDENR, Ecosystem Enhancement Program. 2009. Broad River Basin Restoration Priorities 2009. Raleigh, NC. Last accessed 1/2016 at: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=705d1b58-cb91-451e-aa58-</u> 4ef128b1e5ab&groupId=60329
- NCDENR, Ecosystem Enhancement Program. 2014. NCDENR, Ecosystem Enhancement Program. 2014. Stream and Wetland Mitigation Monitoring Guidelines. Last accessed1/2016 at: <u>http://portal.ncdenr.org/c/document_library/get_file?p_1_id=60409&folderId=18877169</u> <u>&name=DLFE-86604.pdf</u>
- NCDENR, Ecosystem Enhancement Program. 2014. Stream and Wetland Mitigation Monitoring Guidelines. Last accessed 6/2015 at: <u>http://portal.ncdenr.org/c/document_library/get_file?p_l_id=60409&folderId=18877169</u> <u>&name=DLFE-86606.pdf</u>
- NC Wetland Functional Assessment Team. 2010. NC Wetland Assessment Method (NC WAM) User Manual, version 4.1. Last accessed 11/2012 at: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=76f3c58b-dab8-4960-ba43-45b7faf06f4c&groupId=38364</u>
- Schafale, M.P. and A.S. Weakley. 2012. Guide to the Natural Communities of North Carolina: Fourth Approximation. Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment and Natural Resources. Raleigh, NC.
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey of Randolph County, North Carolina. 2006

APPENDIX A

Background Tables

					Mitigatio	n Credi	ts			
	:	Stream		oarian etland	Non-riparian Wetland				Nitrogen Nutrient Offset	Phosphorous Nutrient Offset
Туре	R	RE	R	RE	R	R	Е			
Linear Feet/Acres	5,230	1,813								
Credits†	5,234	966								
FOTAL CREDITS		6,200								
					Project Co	mpone				
Project Component -or- Reach ID		Stationing/ Location	Foo	isting otage/ reage	Appro (PI, PII		- Resto	oration or- oration valent	Restoration Footage/ Acreage	Mitigation Ratio
	50-	+00 to 55+50	5	50	Enhancen	nent II	2	20	550	2.5:1
Tributary 1	55-	+50 to 58+24	2	257	Enhancer	nent I	183		274	1.5:1
	58-	+24 to 61+17	2	29	Restoration		294		293	1:1
Tributary 1-1	70-	+00 to 73+13	3	13	Enhancement II		125		313	2.5:1
Tributary 2	80-	+00 to 80+49	46		Enhancement II		20		49	2.5:1
Thouary 2	80-	+49 to 81+27	77		Restoration		78		78	1:1
Tributary 3	90-	+00 to 96+27	624		Enhancement I		418		627	1.5:1
Thouary 5	96+27 to 101-57		5	517	Restoration		530		530	1:1
Tributary 3-1	150-	+00 to 150+78		68	Restoration		78		78	1:1
Tributary 4*	250-	+00 to 257+42	6	577	Restoration		692		692	1:1
Tributary 5**	300-	+00 to 300+95		64	N/A	L	0		(95)	N/A
UTCC*	10-	+00 to 46+09	3,	246	Restoration		3,562		3,559	1:1
				(Component	Summa		,		
Restoration I	.evel	Stream (linear feet)	Ripa	rian Wo	etlands (Ac	res)	Rip Wet	on- arian tlands cres)	Buffer (square feet)	Upland (Acres)
			River	rine	Non-Riv	erine				
Restoration	n	5,234 lf								
Enhanceme	nt									
Enhancemer	nt I	901								
Enhancemen	t II	912								
TOTAL CRE	DITC	6,200								

 R= Restoration
 RE= Restoration Equivalent of Creation or Enhancement

 *=Crossings have been removed from creditable linear footage for all project streams.

 **=Tributary 5 does not have any mitigation credit, but is included to show its stationing as part of the mitigation project.

 †=Changes made during construction resulted in the loss of 4 lf of stream, but per IRT review, this did not result in a loss of credits. Please see Appendix F for additional information.

Table 2. Project Activity & Reporting History Cedar Branch Restoration Sites, DMS Project #97009							
Activity or Report	Data Collection Complete	Actual Completion or Delivery					
Mitigation Plan		May 2017					
Final Design - Construction Plans		March 8, 2017					
Construction Grading Completed		March 28, 2018					
Planting Completed		April 6, 2018					
Baseline Monitoring/Report	April 2018	May 2018					
Vegetation Monitoring	April 10, 2018						
Stream Survey	April 11, 2018						
Year 1 Monitoring	January 2019	January 2019					
Vegetation Monitoring	November 5, 2018						
Stream Survey	January 14, 2019						
Crossing Repair(outside easement)	May 2019						
Year 2 Monitoring	July 2019	December 2019					
Vegetation Monitoring	July 9, 2019						
Stream Survey	June 26, 2019						
Year 3 Monitoring	July 2020	December 2020					
Vegetation Monitoring	July 31, 2020						
Stream Survey	June 30, 2020						
Invasive Treatment		July 16, 2021					
Year 4 Monitoring	November 2021	December 2021					
Supplemental Planting		January 4, 2022					
Invasive Treatment		July 26, 2022					
Year 5 Monitoring	December 2022	January 2023					
Vegetation Monitoring	July 19, 2022						
Stream Survey	December 14, 2022						

Table 3. Project Contacts							
Cedar Branch Restoration Site, DMS Project #97009							
Design Firm	KCI Associates of North Carolina						
	4505 Falls of Neuse Road						
	Suite 400						
	Raleigh, NC 27609						
	Contact: Mr. Adam Spiller						
	Phone: (919) 278-2514						
	Fax: (919) 783-9266						
Construction Contractor	KCI Environmental Technologies and Construction						
	4505 Falls of Neuse Road, Suite 400						
	Raleigh, NC 27609						
	Contact: Mr. Adam Spiller						
	Phone: (919) 278-2514						
Planting Contractor	Conservation Services Inc.						
	1620 N. Delphine Ave.						
	Waynesboro, VA 22980						
	Contact: Mr. David Coleman						
	Phone: (540) 941-0067						
Monitoring Performers	KCI Associates of North Carolina						
	4505 Falls of Neuse Road						
	Suite 400						
	Raleigh, NC 27609						
	Contact: Mr. Adam Spiller						
	Phone: (919) 278-2514						
	Fax: (919) 783-9266						

Project Name	Cedar Branch Restoration Site									
County				Ra	ndolph C	ounty				
Project Area (acres)					21.3 acr	es				
Project Coordinates (lat. and long	g.)				35.82387	78° N79	.90855°	W		
	5.)	Pro	ject Wate	rshed Su	immary Informa		.,			
Physiographic Province					U	Piedmon	nt			
River Basin						Yadkin	l			
USGS Hydrologic Unit 8-digit			030401	03	USGS H	vdrologi	ic Unit 14-digit 0304010305004			
DWQ Sub-basin			000101	00	0.0001	13-2-3		- angro		
						294 acre				
Project Drainage Area (acres)	6					294 acre	:5			
Project Drainage Area Percentag Impervious Area	e of					4%				
CGIA Land Use Classification					Cover 59% (173 a (15 ac), Transpor			oods/Conifers 34	4% (100 ac), Low	
					mary Informati		(0)			
Parameters	UTCC		T1, T1-	1	T2	T3, T3	-1	T4	T5	
Length of reach (linear feet)			1,349		124	1,209		627	61	
Drainage area (acres)	88 acres		30 acres		18 acres	28 acres		30 acres	31 acres	
NCDWQ Water Quality Classification	С		С		С	С		С	С	
Rosgen Classification	G4c-E4		G4		G4	E4		G4	C4b	
Evolutionary trend	Channelized,		Channelized,		Channelized,	Channelized,		Channelized,	Stable	
	Stage III				Stage III	Stage I		Stage III		
Mapped Soil Series	Mecklent		Wynott-		Mecklenburg		lenburg	Mecklenburg	Mecklenburg	
	Clay Loa Well drai		Complex Well drained		Clay Loam Well drained	Clay Loam Well drained		Clay Loam Well drained	Clay Loam Well drained	
Drainage class Soil Hydric status		nea		lined						
	Hydric 1.5%		Hydric 3.1%		Hydric 3.1%	Hydric 3.7%		Hydric 3.1%	Hydric 2.7%	
Slope FEMA classification										
FEMA classification	Zone X		Zone X		Zone X	Zone X		Zone X	Zone X	
Existing vegetation community Pasture, Headwate		er			Headwater Forest	Pasture		Pasture	Headwater Forest	
Forest		Forest		land Summary Information		l tion				
Parameters		LA			; 					
Size of Wetland (acres)				0.02 (V	VA)		0.03 (WB and WC)			
Wetland Type					Bottomland Hardwood Forest			Bottomland Hardwood Forest		
Mapped Soil Series					Wynott-Enon Complex			Mecklenburg clay loam		
Drainage class					Well Drained			Well Drained		
Soil Hydric Status					Hydric			Hydric		
Source of Hydrology					Stream Floodplain			Hillside Seepage and Stream Floodplai		
Hydrologic Impairment					Ditching and Grazing			Ditching and Grazing		
Existing vegetation community					d Wetland (He	adwater	Emergent Wetland (Non-Tidal Freshwater Marsh)			

Regulatory Considerations							
Regulation	Applicable?	Resolved?	Supporting Documentation				
Waters of the United States – Section 404	Yes	NWP 27	Jurisdictional Determination				
Waters of the United States – Section 401	Yes	NWP 27	Jurisdictional Determination				
Endangered Species Act	No	N/A	N/A				
Historic Preservation Act	No	N/A	N/A				
Coastal Zone Management Act (CZMA)/ Coastal Area Management Act (CAMA)	No	N/A	N/A				
Essential Fisheries Habitat	No	N/A	N/A				

APPENDIX B

Visual Assessment Data

LEGEND:

BEGIN TRIB 1

VEG PLOT ACHIEVING DENSITY CRITERION	
VEG PLOT BELOW DENSITY CRITERION	
VEG PLOT TOTAL / PLANTED STEM DENSITY	794/697
STREAM GAUGE	-
WETLAND GAUGE	Ð
PHOTO POINT	5
CROSS-SECTION	• • •
CONSERVATION EASEMENT	
STREAM RESTORATION	
STREAM ENHANCEMENT II	
NON-CREDIT STREAM LENGTH	
STEP POOL	
RIFFLE CASCADE	
RIFFLE ENHANCEMENT	
RIFFLE GRADE CONTROL	
LIVE LIFT	-
SUPPLEMENTAL PLANTING (2022)	
INVASIVE SPECIES TREATMENT (2022)	
	\bigcirc

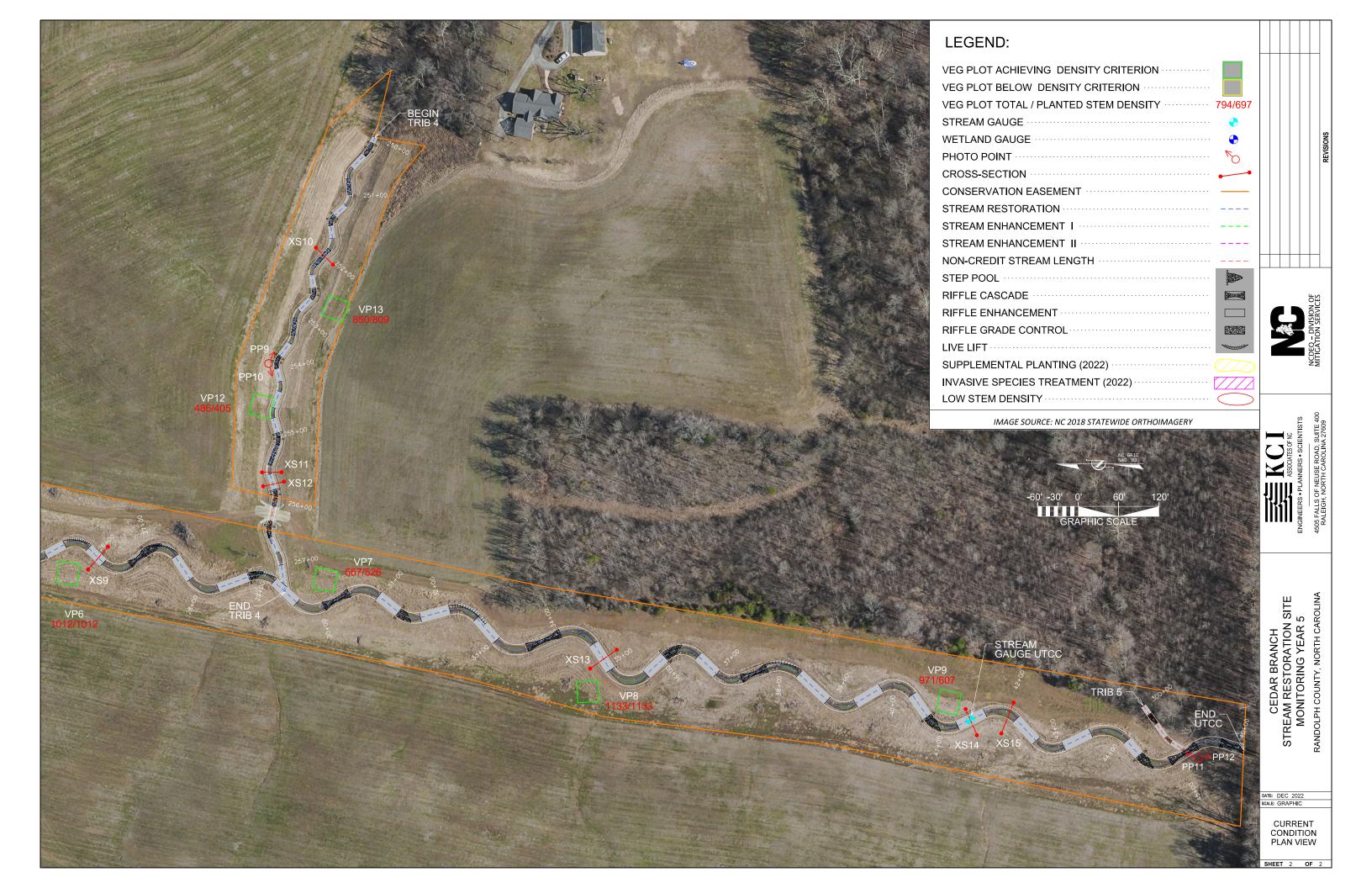
BEGIN UTCC

BEGIN TRIB 3

GRAPHIC SCALE

FLOW CAMERA)

BEGIN TRIB 2


VETLANI

WETLAND GAUGE 3

TRIB 3-1

IMAGE SOURCE: NC 2018 STATEWIDE ORTHOIMAGERY

Visual Stream Morphology Stability Assessment

Assessment Date: 12/13/2022

Reach ID	,	UTCC					
Assessed Length	l	3,559					
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing a Intended
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	48	48			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	47	47			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	47	47			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	48	48			100%
		2. Thalweg centering at downstream of meander (Glide)	47	47			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	36	36			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	36	36			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	36	36			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	36	36			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	36	36			100%

Table 5 Cedar Branch Stream Restoration Site, DMS Project#97009

Cedar Branch Restoration Site
DMS Project # 97009

KCI Associates of NC, PA
2022-MY05

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect			0	0	100%
	(Riffle and Run units)	flow laterally (not to include point bars)			-	-	
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	14	14			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	14	14			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	14	14			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	14	14			100%
		2. Thalweg centering at downstream of meander (Glide)	14	14			100%
			•				
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	5	5			100%

Visual Stream Morphology Stability Assessment

Table 5 Cedar Branch Stream Restoration Site, DMS Project#97009

Reach ID

Assessed Length

T1

1,117

Assesment Date: 12/13/2022

Cedar Branch Restoration Site	
DMS Project # 97009	

KCI Associate	s of NC, PA
	2022-МҮ05

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect			0	0	100%
	(Riffle and Run units)	flow laterally (not to include point bars)			0	0	100%
		2. <u>Degradation</u> - Evidence of downcutting	4	4	0	0	
	2. Riffle Condition 3. Meander Pool	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	4	4			100%
	S. Meander Pool	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	3	3			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	3	3			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	4	4			100%
		2. Thalweg centering at downstream of meander (Glide)	3	3			100%
	-						-
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			N/A
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			N/A
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			N/A
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			N/A
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			N/A

Cedar Branch Stream Restoration Site, DMS Project#97009

T2 127

Table 5 **Reach ID**

Assessed Length

Visual Stream Morphology Stability Assessment

Assessment Date: 12/13/2022

Number Stable,

Cedar Branch Restoration Site
DMS Project # 97009

Table 5

Reach ID

E

Assessed Length

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect			0	0	100%
	(Riffle and Run units)	flow laterally (not to include point bars) 2. <u>Degradation</u> - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	27	27	0	U	100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	37	37			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	37	37			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	27	27			100%
		2. Thalweg centering at downstream of meander (Glide)	37	37			100%
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
				Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	28	28			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	28	28			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	28	28			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	28	28			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	28	28			100%

18

Visual Stream Morphology Stability Assessment Cedar Branch Stream Restoration Site, DMS Project#97009

T3

1,157

Assesment Date: 12/13/2022

Cedar Branch Restoration Site
DMS Project # 97009

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1. Vertical Stability	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect			0	0	100%
1. Deu	(Riffle and Run units)	flow laterally (not to include point bars)			-		
		2. <u>Degradation</u> - Evidence of downcutting		-	0	0	100%
	2. Riffle Condition	1. Texture/Substrate - Riffle maintains coarser substrate	19	19			100%
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	22	22			100%
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	22	22			100%
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	19	19			100%
	_	2. Thalweg centering at downstream of meander (Glide)	22	22			100%
			•				•
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%
			•	Totals	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	13	13			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	13	13			100%
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	13	13			100%
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	13	13			100%
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	13	13			100%

19

Cedar Branch Stream Restoration Site, DMS Project#97009

T4 692

Table 5 Reach ID

Assessed Length

Visual Stream Morphology Stability Assessment

Assesment Date: 12/13/2022

Table 6

Vegetation Condition Assessment

Assessment Date: 12/13/2022

Cedar Branch Stream Restoration Site, DMS Project# 97009

Planted Acreage	20.6						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage	
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%	
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	1	0.36	1.7%	
	1	0.36	1.7%				
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	0	0.00	0.0%	
			Cumulative Total	1	0.36	1.7%	
Easement Acreage	20.6						
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage	
4. Invasive Areas of Concern	eas of Concern Areas or points (if too small to render as polygon at map scale).		1000 SF Pattern and Color		0.00	0.0%	
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%	

Photo Reference Photos

PP1 - MY-00 - 4/18/18

PP2 - MY-00 - 4/18/18

PP3-MY-00-4/18/18

PP1 - MY-05 - 12/13/22

PP2 - MY - 05 - 12/13/22

PP3 - MY-05 - 12/13/22

PP4 - MY-00 - 4/18/18

PP5 - MY - 00 - 4/18/18

PP6-MY-00-4/18/18

PP4-MY-05-12/13/22

PP5 - MY - 05 - 12/13/22

PP6-MY-05-12/13/22

PP7 - MY - 00 - 4/18/18

PP8 - MY-00 - 4/18/18

PP9-MY-00-4/18/18

PP7-MY-05-12/13/22

PP8 - MY-05 - 12/13/22

PP9-MY-05-12/13/22

PP10 - MY-00 - 4/18/18

PP11 - MY-00 - 4/18/18

PP12-MY-00-4/18/18

PP10-MY-05-12/13/22

PP11 - MY-05 - 12/13/22

PP12-MY-05-12/13/22

Vegetation Monitoring Plot Photos

Vegetation Plot 1 - MY-00 - 4/10/18

Vegetation Plot 2 – MY-00 – 4/10/18

Vegetation Plot 3 – MY-00 – 4/10/18

Vegetation Plot 1 – MY-05 – 7/18-22

Vegetation Plot 2 – MY-05 – 7/18-22

Vegetation Plot 3 – MY-05 – 7/18-22

Cedar Branch Restoration Site DMS Project # 97009

Vegetation Plot 4 - MY-00 - 4/10/18

Vegetation Plot 5 - MY-00 - 4/11/18

Vegetation Plot 6 – MY-00 – 4/11/18

Vegetation Plot 4 - MY-05 - 7/18-22

Vegetation Plot 5 - MY-05 - 7/18-22

Vegetation Plot 6 – MY-05 – 7/19/22

Vegetation Plot 7 - MY-00 - 4/11/18

Vegetation Plot $8 - MY-00 - \frac{4}{11/18}$

Vegetation Plot 9 – MY-00 – 4/11/18

Vegetation Plot 7 – MY-05 – 7/19/22

Vegetation Plot 8 – MY-05 – 7/19/22

Vegetation Plot 9 – MY-05 – 7/19/22

Vegetation Plot 10 – MY-00 – 4/10/18

Vegetation Plot 11 – MY-00 – 4/10/18

Vegetation Plot 12 – MY-00 – 4/11/18

Vegetation Plot 10 – MY-05 – 7/18-22

Vegetation Plot 11 - MY-05 -7/18-22

Vegetation Plot 12 – MY-05 – 7/19/22

Vegetation Plot 13 – MY-00 – 4/11/18

Vegetation Plot 13 – MY-05 – 7/19/22

APPENDIX C

Vegetation Plot Data

Cedar Branch Restoration Site, DMS Project #9700	9													
Species	Current Plot Data MY03 (2020)													
	Plot 01		Plot 02		Plot 03		Plot 04		Plot 05		Plot 06		Plot 07	
	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total
American Elm (Ulmus americana)														
Baccharis (Baccharis hamifolia)														
Black Walnut (Juglans nigra)				1		1								
Black Willow (Salix nigra)														
Eastern Sy camore (Platanus occidentalis)				3	6	6	4	. 4	. 3	3	10	10	5	
Green Ash (Fraxinus pennsylvanica)				1	6	6	9	10	8	8	3	3	2	
Oak (Quercus sp.)														
Persimmon (Diospyros virginiana)	2	2												
Pin Oak (Quercus palustris)	1	1	2	3										
River Birch (Betula nigra)					2	2					3	3		
Silver Willow (Salix sericea)														
Smooth Sumac (Rhus glabra)														
Swamp Chestnut Oak (Quercus michauxii)					6	6	6	6	1	1	9	9	4	
Sweetgum (Liquidambar styraciflua)				2		1								
Tulip Poplar (Liriodendron tulipifera)			6	6			2	2					1	
White Oak (Quercus alba)	2	2	4	4										
Willow Oak (Quercus phellos)	1	1	7	7	3	3		1	2	2			1	
Unknown														
Stem count	: 6	6	19	27	23	25	21	23	14	14	25	25	13	14
size (ares)) 1		1		1		1		1		1		1	
size (ACRES)	6) 0.025		0.025		0.025		0.025		0.025		0.025		0.025	
Species count	4	4	4	8	5	7	4	5	4	4	4	4	5	6
Stems per ACRE	243	243	769	1093	931	1012	850	931	567	567	1012	1012	526	567

Table 7. Stem Count by Plot and Species Cedar Branch Restoration Site, DMS Project #9700	0											
Cedar Branch Restoration Site, DMS Project #9700	9				Current	Plot Da	ata MY03 (2020)				
	Plot	08	Plot	09	Plot	10	Plot	11	Plot	12	Plot	13
Species	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total
American Elm (Ulmus americana)				1						1		1
Baccharis (Baccharis hamifolia)								1				
Black Walnut (Juglans nigra)				3				1				
Black Willow (Salix nigra)								3				
Eastern Sycamore (Platanus occidentalis)	4	4	7	' 7	8	8		1				
Green Ash (Fraxinus pennsylvanica)	6	6	1	. 2	2	2						
Oak (Quercus sp.)												
Persimmon (Diospyros virginiana)							2	2			8	8 8
Pin Oak (Quercus palustris)							1	1			4	4
River Birch (Betula nigra)	6	6	1	. 1	2	2						
Silver Willow (Salix sericea)												
Smooth Sumac (Rhus glabra)												
Swamp Chestnut Oak (Quercus michauxii)	10	10	4	. 4								
Sweetgum (Liquidambar styraciflua)				4						1		
Tulip Poplar (Liriodendron tulipifera)			2	2	1	. 1	2	2			1	. 1
White Oak (Quercus alba)							8	8	1	1	6	6
Willow Oak (Quercus phellos)	2	2			1	. 1	3	3	9	9	1	. 1
Unknown												
Stem count	28	28	15	24	14	14	16	22	10	12	20	21
size (ares)	1		1		1		1		1		1	
size (ACRES)	0.02	25	0.02	25	0.02	25	0.02	25	0.02	25	0.02	25
Species count	5	5	5	8	5	5	5	9	2	4	5	6
Stems per ACRE	1133	1133	607	971	567	567	647	890	405	486	809	850

						Annual	Means			
	MY05 (2022)	MY03 (2020)	MY02 (2	2019)	MY01 (2018)	MY00 (2	2018)
Species	Planted	Total	Planted	Total	Planted	Total	Planted	Total	Planted	Total
American Elm (Ulmus americana)		3		1		1				
Baccharis (Baccharis hamifolia)		1		1						
Black Walnut (Juglans nigra)		7		1		1				
Black Willow (Salix nigra)		3		3		3		1		
Eastern Sycamore (Platanus occidentalis)	47	51	46	48	46	48	46	46		
Green Ash (Fraxinus pennsylvanica)	37	40	37	37	37	37	36	38		
Oak (Quercus sp.)									30	30
Persimmon (Diospyros virginiana)	12	12	12	13	12	13	8	8		
Pin Oak (Quercus palustris)	8	9	5	5	5	5	5	5		
River Birch (Betula nigra)	14	14	16	16	16	16	16	16	6	6
Silver Willow (Salix sericea)				1		1		1		
Smooth Sumac (Rhus glabra)								1		
Swamp Chestnut Oak (Quercus michauxii)	40	40	52	52	52	52	68	68		
Sweet Gum (Liquidambar styraciflua)		8		2						
Tulip Poplar (Liriodendron tulipifera)	15	15	19	21	19	21	31	31	13	13
White Oak (Quercus alba)	21	21	20	20	20	20				
Willow Oak (Quercus phellos)	30	31	30	30	30	30	31	31	1	1
Unknown									280	280
Stem count	224	255	237	251	237	248	241	246	330	330
size (ares)	13	-	13	-	13		13		13	
size (ACRES)	0.32	21	0.32	21	0.32	1	0.32	21	0.32	1
Species count	9	14	9	15	9	13	8	11	5	5
Stems per ACRE	697	794	738	781	738	772	750	766	1027	1027

APPENDIX D

Stream Measurement and Geomorphology Data

Table 8. UTCC Baseline Stream D	ata Sum	mary															
Cedar Branch Restoration Site, DN	1S Proje	ect #9700	9														
Parameter		Pre-Exis	ting Co	ndition]	Reference	e Reach(es) Data			Design			As-b	ouilt	
		I	1		1	1	T	1						1	I		1
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	UTCC-1	UTCC-2	UTCC-3	Min	Mean	Max	n
Bankfull Width (ft)	7.8	10.5	10.1	13.9	4	9.0	13.3	13.1	17.7	6	11.7	13.2	15.0	11.7	13.4	15.2	5
Floodprone Width (ft)	9.6	31.7	33.5	50.0	4	13.1	55.6	50.0	100.0	6	90	100	105	>40	>40	>50	5
Bankfull Mean Depth (ft)	1.2	1.4	1.4	1.7	4	0.9	1.2	1.2	1.5	6	1.0	1.0	1.1	0.8	1.0	1.1	5
Bankfull Max Depth (ft)	1.7	2.2	2.2	2.8	4	1.3	1.7	1.7	2.0	6	1.5	1.5	1.7	1.4	1.6	1.8	5
Bankfull Cross-Sectional Area (ft ²)	11.3	14.6	15.1	16.9	4	10.4	16.4	14.0	24.7	6	11.3	13.2	16.9	9.6	12.8	15.8	5
Width/Depth Ratio	5.3	7.6	6.9	11.4	4	7.6	11.1	11.5	13.4	6	12.1	13.2	13.2	10.8	14.3	18.1	5
Entrenchment Ratio	1.2	2.9	2.6	5.0	4	1.3	3.8	3.9	5.9	6	>2.2	>2.2	>2.2	2.9	3.6	4.8	5
Bank Height Ratio	1.0	1.9	2.0	2.5	4	1.0	1.0	1.0	1.0	6	1.0	1.0	1.0	1.0	1.0	1.0	5
Pattern		•				•		•									
Channel Beltwidth (ft)			*					45			41-54	46-58	53-74	41	54	74	47
Radius of Curvature (ft)		* *						13-42			25-35	30-35	35-45	25	34	45	47
Rc:Bankfull width (ft/ft)			*					1.3-4.4			2.1-3.0	2.3-2.7	2.3-3.0	2.1	2.6	3.0	47
Meander Wavelength (ft)			*					93-136			101-150	115-155	153-180	101	142	180	47
Meander Width Ratio			*					4.5-5.0			3.5-4.6	3.5-4.4	3.5-4.9	3.5	4.1	4.9	47
Profile													•				
Riffle Length (ft)														4.6	34.7	57.4	48
Riffle Slope (ft/ft)	0.021	0.032	0.03	0.048	4		0.0	013-0.02	8		0.020-0.037	0.020-0.035	0.020-0.035	0.039	0.023	0.053	48
Pool Length (ft)	*							3-25			19-42	20-49	36-61	4.3	28.5	55.0	47
Pool Spacing (ft)	*							30-59			50-83	67-91	79-105	37.3	77.5	124.0	47
Substrate and Transport Paramete	rs										•		•				
SC% / Sa% / G% / C% / B% /Be%	00	0%/23%/63%/13%/1%/0%					8%/19%/6	6%/14%	0.7%/09	%				3%/	5%/67%/	23%/0%/	0%
d16 / d35 / d50 / d84 / d95 (mm)		1.5/5	.4/16/55	5/90			1.7/6	.4/19/56	/93						10/27/37	/78/113	
Channel length (ft)			3,246								1,400	512	1,650		3,5	62	
Drainage Area (SM)			0.45				0	.13-0.49			0.22	0.28	0.41		0.4		
Rosgen Classification		(64c-E4					B4c			C4	C4	C4		C	4	
Sinuosity			1.0					1.2			1.2	1.2	1.2		1.	2	
Water Surface Slope (ft/ft)			0.015					0.013			0.013	0.013	0.013	1	0.0		

Table 8. T1 Baseline Stream DataCedar Branch Restoration Site, DM		•)9															
Parameter		Pre-Exis	ting Co	ndition		Refe	ence Rea	ach(es) E	Data (UT	CC)		Desi	gn			As-b	ouilt	
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n
Bankfull Width (ft)	5.8					9.0	13.3	13.1	17.7	6	7.8				8.9			
Floodprone Width (ft)	9.0					13.1	55.6	50.0	100.0	6	50				>40			
Bankfull Mean Depth (ft)	0.9					0.9	1.2	1.2	1.5	6	0.6				0.5			
Bankfull Max Depth (ft)	1.2					1.3	1.7	1.7	2.0	6	1.0				1.0			
Bankfull Cross-Sectional Area (ft ²)	5.0					10.4	16.4	14.0	24.7	6	5.0				4.6			
Width/Depth Ratio	6.7					7.6	11.1	11.5	13.4	6	12.1				17.0			
Entrenchment Ratio	1.5					1.3	3.8	3.9	5.9	6	>2.2				4.2			
Bank Height Ratio	2.3					1.0	1.0	1.0	1.0	6	1.0				1.0			
Pattern											1							
Channel Beltwidth (ft)			*					45			29-36				29	33	36	14
Radius of Curvature (ft)		*						13-42			15-25				15	20	25	14
Rc:Bankfull width (ft/ft)								1.3-4.4			1.9-3.2				1.9	2.6	3.2	14
Meander Wavelength (ft)								93-136			72-80				72	76	80	14
Meander Width Ratio								4.5-5.0			3.7-4.6				3.7	4.2	4.6	14
Profile												•		•		•		4
Riffle Length (ft)															3.6	20.9	32.9	14
Riffle Slope (ft/ft)	0.018						0.0	013-0.02	8		0.025-0.040				0.019	0.042	0.076	14
Pool Length (ft)	*							3-25			8-25				5.1	11.8	20.1	14
Pool Spacing (ft)	*							30-59			42-51				17.1	40.1	58.5	14
Substrate and Transport Paramete	ers																	
SC% / Sa% / G% / C% / B% /Be%	0	0%/15%/75%/10%/0%/0%					%/19%/6	6%/14%	6/0.7%/09	V ₀					1%/	14%/79%	5/6%/0%/	0%
d16 / d35 / d50 / d84 / d95 (mm)		0%/15%/75%/10%/0%/0% 2.1/5/12/50/98					1.7/6	5.4/19/56	/93							2.7/15/2	4/47/77	
Channel length (ft)			1,036			T						1,1	18			1,1	18	
Drainage Area (SM)		1,036 0.05					0	.13-0.49				0.0	5			0.0)5	
Rosgen Classification			G4					B4c				C4	b			C4	lb	
Sinuosity			1.0					1.2				1.3	3			1.	3	
Water Surface Slope (ft/ft)			0.031					0.013				0.02	25			0.0	25	

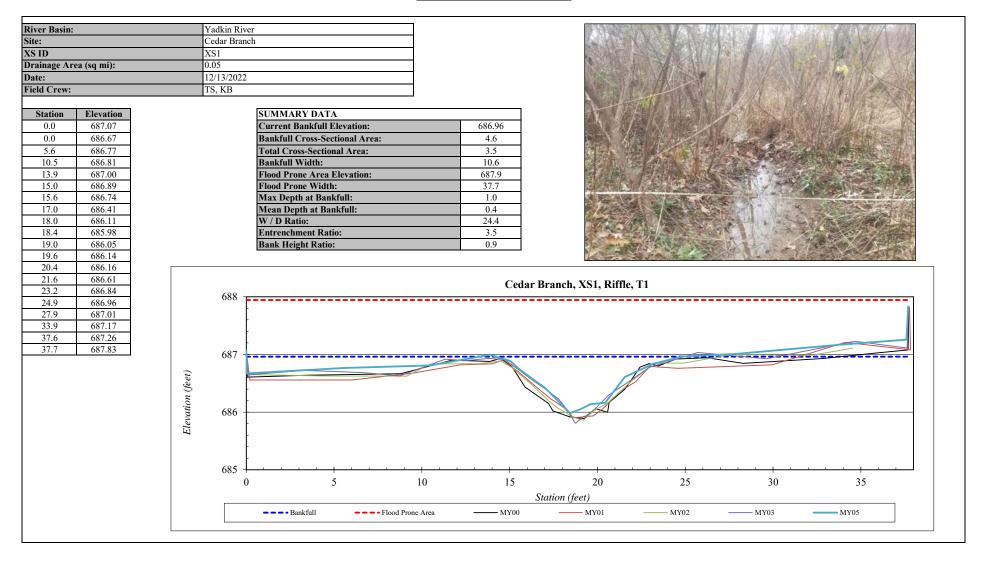
Parameter		Pre-Exis	ting Co	ndition		Refe	rence Re	ach(es) T	ata (UT	(\mathbf{D})		Desi	an			As-b	milt	
		TIC-LAIS	ting Co	lation		Refer				,		Desi	<u>511</u>			113-0	unt	
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n
Bankfull Width (ft)	**					9.0	13.3	13.1	17.7	6	7.8				**			
Floodprone Width (ft)	**					13.1	55.6	50.0	100.0	6	30				**			
Bankfull Mean Depth (ft)	**					0.9	1.2	1.2	1.5	6	0.6				**			
Bankfull Max Depth (ft)	**					1.3	1.7	1.7	2.0	6	1.0				**			
Bankfull Cross-Sectional Area (ft ²)	**					10.4	16.4	14.0	24.7	6	5.0				**			
Width/Depth Ratio	**					7.6	11.1	11.5	13.4	6	12.1				**			
Entrenchment Ratio	**					1.3	3.8	3.9	5.9	6	>2.2				**			
Bank Height Ratio	**					1.0	1.0	1.0	1.0	6	1.0				**			
Pattern							•	•	•		•							
Channel Beltwidth (ft)			*					45			N/A				**			
Radius of Curvature (ft)		*						13-42			15-25				**			
Rc:Bankfull width (ft/ft)		*						1.3-4.4			1.9-3.2				**			
Meander Wavelength (ft)								93-136			N/A				**			
Meander Width Ratio								4.5-5.0			N/A				**			
Profile		*									•							
Riffle Length (ft)	**														9.4	20.0	24.9	4
Riffle Slope (ft/ft)	**						0.0	013-0.02	8		0.026-0.027				0.023	0.025	0.027	4
Pool Length (ft)	**							3-25			12-17				6.4	8.1	9.0	3
Pool Spacing (ft)	**							30-59			38				36.4	37.8	39.1	3
Substrate and Transport Paramete	ers																	
$SC\% \ / \ Sa\% \ / \ G\% \ / \ C\% \ / \ B\% \ / Be\%$		**					%/19%/6	66%/14%	/0.7%/09	%						**	*	
d16 / d35 / d50 / d84 / d95 (mm)		**					1.7/6	5.4/19/56	/93							**	*	
Channel length (ft)		123										12	7			12	.7	
Drainage Area (SM)		0.03					0	.13-0.49				0.0	3			0.0)3	
Rosgen Classification								B4c				C4	Ļ		1	C	4	
Sinuosity			1.0					1.2				N/2	4			N/	A	
Water Surface Slope (ft/ft)			0.031					0.013				0.01	7			0.0	16	

		n n :		41.1				1 () 7		3 9)								
Parameter		Pre-Exis	ting Co	ndition		Refe	rence Rea	ich(es) D	Data (UTO	CC)	L	Desi	lgn			As-b	uilt	
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n
Bankfull Width (ft)	4.7	5.4		6.0	2	9.0	13.3	13.1	17.7	6	7.8				5.9	5.9	6.0	2
Floodprone Width (ft)	11.3	13.5		15.7	2	13.1	55.6	50.0	100.0	6	30				>25	>25	>25	2
Bankfull Mean Depth (ft)	0.8	0.8		0.8	2	0.9	1.2	1.2	1.5	6	0.6				0.4	0.5	0.5	2
Bankfull Max Depth (ft)	1.3	1.3		1.3	2	1.3	1.7	1.7	2.0	6	1.0				0.7	0.8	0.8	2
Bankfull Cross-Sectional Area (ft ²)	3.9	4.5		5.0	2	10.4	16.4	14.0	24.7	6	5.0				2.5	2.8	3.1	2
Width/Depth Ratio	5.6	6.4		7.1	2	7.6	11.1	11.5	13.4	6	12.1				11.4	12.6	13.8	2
Entrenchment Ratio	1.3	2.4		3.4	2	1.3	3.8	3.9	5.9	6	>2.2				4.4	4.7	5.1	2
Bank Height Ratio	1.6	2.1		2.6	2	1.0	1.0	1.0	1.0	6	1.0				1.0	1.0	1.0	2
Pattern									-									
Channel Beltwidth (ft)			*					45			N/A							
Radius of Curvature (ft)		*						13-42			15-25							
Rc:Bankfull width (ft/ft)								1.3-4.4			1.9-3.2							
Meander Wavelength (ft)								93-136			N/A							
Meander Width Ratio			*					4.5-5.0			N/A							
Profile																		
Riffle Length (ft)															19.7	28.1	68.8	26
Riffle Slope (ft/ft)	0.046	0.067		0.087	2		0.0	13-0.02	8		0.025-0.042				0.021	0.034	0.063	26
Pool Length (ft)	*							3-25			11-22				3.6	7.3	11.3	35
Pool Spacing (ft)	*							30-59			32-55				6.8	30.5	85.9	35
Substrate and Transport Paramete	rs					•												
SC% / Sa% / G% / C% / B% /Be%	0	0%/31%/6				0.3			6/0.7%/09	V ₀)%/75%/		0%
d16 / d35 / d50 / d84 / d95 (mm)		1.0/2.	4/6.5/33	3/73			1.7/6	.4/19/56	/93							18/32/41	/71/105	
Channel length (ft)			1,141									1,1:	57			1,1:	57	
Drainage Area (SM)			0.04				0	.13-0.49				0.0	4			0.0	4	
Rosgen Classification			E4					B4c				C4	b			C4	b	
Sinuosity			1.0					1.2				N/.	A			N/.	A	
Water Surface Slope (ft/ft)			0.037					0.013				0.0	35			0.0	35	

Damanatan		D	tine C			D of		-1-() T)-+- (IIT)	(D)		р [.]				As-b		
Parameter		Pre-Exis	sting Co	ndition		Refei	rence Rea	ach(es) L	Data (UTC	<i>.</i> C)		Desi	gn			As-b	uilt	
Dimension - Riffle	Min	Mean	Med	Max	n	Min	Mean	Med	Max	n	Min	Mean	Max	n	Min	Mean	Max	n
Bankfull Width (ft)	6.5					9.0	13.3	13.1	17.7	6	7.8				6.7	6.8	6.9	2
Floodprone Width (ft)	7.8					13.1	55.6	50.0	100.0	6	30				>30	>30	>30	2
Bankfull Mean Depth (ft)	0.8					0.9	1.2	1.2	1.5	6	0.6				0.5	0.5	0.5	2
Bankfull Max Depth (ft)	1.0					1.3	1.7	1.7	2.0	6	1.0				0.8	0.8	0.8	2
Bankfull Cross-Sectional Area (ft ²)	5.0					10.4	16.4	14.0	24.7	6	5.0				3.3	3.4	3.5	2
Width/Depth Ratio	8.5					7.6	11.1	11.5	13.4	6	12.1				12.7	13.6	14.6	2
Entrenchment Ratio	1.2					1.3	3.8	3.9	5.9	6	>2.2				4.7	4.9	5.1	2
Bank Height Ratio	4.5					1.0	1.0	1.0	1.0	6	1.0				1.0	1.0	1.0	2
Pattern									-									
Channel Beltwidth (ft)			*					45			N/A							
Radius of Curvature (ft)		*						13-42			15-25							
Rc:Bankfull width (ft/ft)		*						1.3-4.4			1.9-3.2							
Meander Wavelength (ft)								93-136			N/A							
Meander Width Ratio								4.5-5.0			N/A							
Profile																		
Riffle Length (ft)															5.5	21.5	42.1	19
Riffle Slope (ft/ft)	0.038						0.0	013-0.02	8		0.030-0.040				0.017	0.040	0.121	19
Pool Length (ft)	*							3-25			13-19				4.0	8.5	12.7	21
Pool Spacing (ft)	*							30-59			34-48				5.5	32.3	55.1	21
Substrate and Transport Paramete	rs																	
$SC\% \ / \ Sa\% \ / \ G\% \ / \ C\% \ / \ B\% \ / Be\%$	0	0%/23%/72%/5%/0%/0%					%/19%/6	6%/14%	6/0.7%/09	V ₀					3%/	0%/73%/	24%/0%/	0%
d16 / d35 / d50 / d84 / d95 (mm)		0%/23%/72%/5%/0%/0% 1.6/4.0/6.4/35/67					1.7/6	.4/19/56	/93							28/37/44	/78/115	
Channel length (ft)		677										69	2			69	2	
Drainage Area (SM)		0.05					0	.13-0.49				0.0	5			0.0)5	
Rosgen Classification			G4					B4c				C4	b			C4	b	
Sinuosity			1.0					1.2				N/2	4			N/.	A	
Water Surface Slope (ft/ft)			0.031					0.013				0.02	28			0.0	28	

	r –	#97009	a		1 (D:00	`						2 / D 1	\ \						- (P	1)	
imension and Substrate		C	ross-Se			e)			C			2 (Pool	.)						3 (Pool	1	
			Statio	on 57+1	19, T1					Statio	n 57+4	4, T1				S			, UTCO	2	
Baseline Bankfull Elevation:				666.60							665.93							657.32			
	Base		MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)		8.3	8.6	9.8	9.8			11.8	13.5	12.9	13.4	15.6			13.5	13.6	13.8	15.0	15.0		
Floodprone Width (ft)		>40	>40	>40	>35			-	-	-	-	-			-	-	-	-			
Bankfull Mean Depth (ft)		0.6	0.5	0.5	0.5			1.1	1.0	1.0	0.9	0.9			1.5	1.5	1.5	1.3	1.3		
Bankfull Max Depth (ft)	1.0	1.0	1.0	1.1	1.1			2.1	2.0	2.0	2.1	2.1			2.8	2.8	2.9	2.8	2.8		
Bankfull Cross-Sectional Area (ft ²)	4.6	4.6	4.6	4.6	4.6			13.4	13.4	13.4	13.4	13.4			20.2	20.2	20.2	20.2	20.2		
Total Cross-Sectional Area (ft ²)	4.6	4.3	4.4	3.9	3.9			13.4	11.8	12.2	9.8	9.8			20.2	20.0	20.2	20.1	20.1		
Bankfull Width/Depth Ratio	17.0	14.8	15.9	20.7	20.7			-	-	-	-	-			-	-	-	-	-		
Bankfull Entrenchment Ratio	4.2	4.6	4.0	3.8	3.8			-	-	-	-	-			-	-	-	-	-		
Bankfull Bank Height Ratio	1.0	0.9	1.0	1.0	0.9			-	-	-	-	-			-	-	-	-	-		
d50 (mm)	24	18	2.5	41	-			-	-	-	-	-			-	-	-	-	-		
		C	ross-Se	ection 4	4 (Riffl	e)			C	ross-Se	ction 5	(Riffle	e)			C	ross-Se	ction 6	6 (Riffl	le)	
		S	Station	13+85	. UTC	Ć			S	tation	22+44.	UTCO	ź				Statio	n 96+6	59. T3	,	
Baseline Bankfull Elevation:				666.93	,						656.55							656.12	-) -		
Buseline Buiktun Elevation.	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)		12.5	12.7	12.0	11.1		101 1 .	14.5	14.3	14.1	14.8	14.8			6.0	6.5	5.8	6.7	5.3		
Floodprone Width (ft)		>50	>50	>50	>50			>45	>45	>45	>45	>45			>30	>30	>30	>30	>25		
Bankfull Mean Depth (ft)		1.0	1.0	1.1	1.1			1.1	1.1	1.1	1.1	1.1			0.5	0.5	0.5	0.5	0.6		
Bankfull Max Depth (ft)		1.7	1.8	1.7	1.7			1.7	1.9	1.9	1.8	1.8			0.8	1.0	1.0	1.0	1.0		
Bankfull Cross-Sectional Area (ft ²)		12.6	12.6	12.6	12.6			15.8	15.8	15.8	15.8	15.8			3.1	3.1	3.1	3.1	3.1		
Total Cross-Sectional Area (ft ²)	-	13.8	12.6	13.3	14.1			15.8	15.7	16.6	14.6	14.6			3.1	3.2	3.0	3.2	2.7		
Bankfull Width/Depth Ratio		12.3	12.7	11.4	9.8			13.3	13.0	12.6	13.9	13.9			11.7	13.7	10.8	14.4	8.9		
Bankfull Entrenchment Ratio		4.5	4.1	4.7	4.7			3.1	3.2	3.2	3.1	3.1			4.4	4.1	4.6	3.9	5.0		
Bankfull Bank Height Ratio	1.0	1.0	0.9	0.9	1.0			1.0	1.0	1.0	1.0	1.0			1.0	0.9	0.9	0.9	0.9		
d50 (mm)	33	49	40	18	-			31	40	69	26	_			41	41	54	15	-		

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

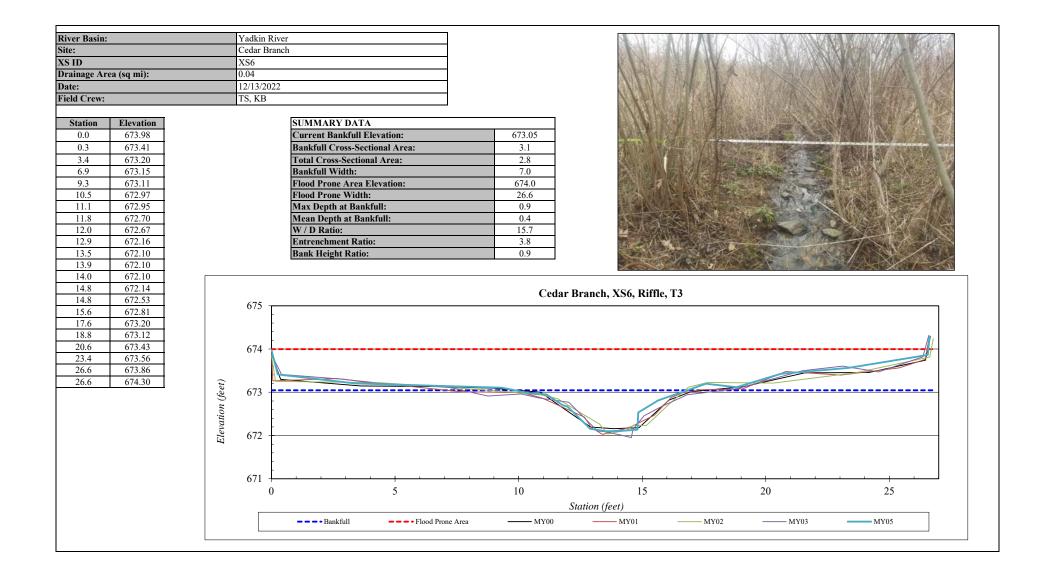

Table 9. Cross-Section Morphology Data Table																					
Cedar Branch Stream Restoration Site, DMS P	oject	#97009						-													
Dimension and Substrate		C	cross-S	ection	7 (Poo	1)			C	ross-Se	ection 8	8 (Riffl	e)			C	ross-Se	ection 9) (Riffl	e)	
Dimension and Substrate			Statio	n 99+()7, T3					Statio	n 99+2	25, T3				S	Station	26+17	, UTCO	С	
Baseline Bankfull Elevation:				666.60							665.93							657.32			
	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)	10.3	8.9	8.5	9.1	10.2			6.0	5.6	6.1	5.4	5.4			13.2	13.0	13.8	13.6	13.6		
Floodprone Width (ft)	-	-	-	-	-			>30	>30	>30	>30	>30			>40	>40	>40	>40	>40		
Bankfull Mean Depth (ft)	0.7	0.8	0.8	0.8	0.7			0.4	0.4	0.4	0.5	0.5			1.0	1.0	0.9	1.0	1.0		
Bankfull Max Depth (ft)	1.8	1.6	1.7	1.7	1.6			0.7	0.9	0.9	0.8	0.8			1.8	1.8	2.0	1.9	1.9		
Bankfull Cross-Sectional Area (ft ²)	6.9	6.9	6.9	6.9	6.9			2.5	2.5	2.5	2.5	2.5			13.0	13.0	13.0	13.0	13.0		
Total Cross-Sectional Area (ft ²)	6.9	8.7	7.2	7.6	6.8			2.5	2.7	2.7	2.3	2.3			13.0	12.0	12.7	12.1	12.1		
Bankfull Width/Depth Ratio	-	-	-	-	-			14.1	12.6	14.8	11.5	11.5			13.3	12.9	14.7	14.3	14.3		
Bankfull Entrenchment Ratio	-	-	-	-	-			5.0	5.4	4.9	5.7	5.7			3.4	3.5	3.2	3.3	3.3		
Bankfull Bank Height Ratio	-	-	-	-	-			1.0	1.1	1.0	1.0	1.0			1.0	0.9	1.0	0.9	1.0		
d50 (mm)	-	-	-	-	-			40	18	29	10	-			57	50	48	34	-		
		Cr	oss-Se	ction 1	0 (Riff	le)			C	ross-Se	ection 1	1 (Poo	ol)			Cr	oss-Se	ction 1	2 (Riff	le)	
			Station		· ·	,					n 225+	· ·	,					n 226+		,	
Baseline Bankfull Elevation:				666.93	-)						656.55)						656.12	-)		
Dasenne Dankfun Elevation.	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY+	Base	MY1	MY2	MY3	MY5	MY7	MY
Bankfull Width (ft)	7.0	8.7	7.2	7.9	7.9	1111 /	1011	10.2	9.6	10.0	9.9	9.9	1111 /	1011	6.7	6.9	7.0	7.3	7.3	10117	
Floodprone Width (ft)		>30	>30	>35	>35			-	-	-	-	-			>30	>30	>30	>30	>30		
Bankfull Mean Depth (ft)		0.4	0.5	0.4	0.4			1.1	1.1	1.1	1.1	1.1			0.5	0.5	0.5	0.5	0.5		
Bankfull Max Depth (ft)		1.0	1.0	1.0	1.0			2.1	2.0	2.0	2.1	2.1			0.8	0.8	0.9	0.8	0.9		
Bankfull Cross-Sectional Area (ft ²)		3.3	3.3	3.3	3.3			10.8	10.8	10.8	10.8	10.8			3.5	3.5	3.5	3.5	3.5		
Total Cross-Sectional Area (ft ²)	3.3	3.0	2.4	2.4	2.4			10.8	11.9	11.6	11.6	11.6			3.5	3.8	3.1	2.7	2.7		
Bankfull Width/Depth Ratio		23.0	15.7	18.9	18.9			-	-	-	-	-			12.9	13.6	14.1	15.3	15.3		
Bankfull Entrenchment Ratio		4.1	5.0	4.5	4.5			-	-	-	-	-			4.7	4.6	4.5	4.3	4.3		
Bankfull Bank Height Ratio		0.9	1.0	1.0	1.0			-	-	-	-	-			1.0	1.0	1.0	1.0	0.9		
d50 (mm)		36	6	6	-			-	-	-	-	-			45	32	22	24	-		

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

Table 9. Cross-Section Morphology Data Tables Cedar Branch Stream Restoration Site, DMS Project #97009 Cross-Section 13 (Riffle) Cross-Section 14 (Riffle) Cross-Section 15 (Pool) **Dimension and Substrate** Station 35+12, UTCC Station 41+94, UTCC Station 42+58, UTCC Baseline Bankfull Elevation: 645.24 637.94 637.43 MY2 MY3 MY5 MY7 MY+ Base MY1 MY2 MY3 MY5 MY7 MY+ MY2 MY3 MY5 MY7 MY+ Base MY1 Base MY1 Bankfull Width (ft) 12.7 13.8 13.1 12.5 13.0 15.3 13.9 13.8 14.3 14.3 22.5 20.7 21.4 20.8 31.3 Floodprone Width (ft) >45 >50 >50 >50 >50 >40 >40>40 >40 >40---Bankfull Mean Depth (ft) 0.8 0.7 0.7 0.8 0.7 0.8 0.9 0.9 0.9 0.9 1.6 1.7 1.7 1.7 1.1 3.2 3.2 Bankfull Max Depth (ft) 1.4 1.4 1.5 1.5 1.4 1.7 1.7 1.7 1.7 1.7 3.4 3.3 3.2 9.6 9.6 9.6 12.8 12.8 12.8 12.8 35.8 35.8 35.8 35.8 9.6 9.6 12.8 35.8 Bankfull Cross-Sectional Area (ft²) Total Cross-Sectional Area (ft² 12.2 7.9 7.8 8.5 6.8 12.8 12.6 14.3 12.2 35.8 32.8 36.2 32.8 29.0 9.6 Bankfull Width/Depth Ratio 16.7 19.8 17.8 16.3 17.7 18.3 15.1 14.8 16.0 16.0 -----Bankfull Entrenchment Ratio 3.8 3.5 3.7 3.9 3.7 2.8 3.1 3.1 3.0 3.0 -_ ---Bankfull Bank Height Ratio 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1.0 1.2 1.2 ----d50 (mm) 13 61 13 61 51 42 23 16 -------

Bank Height Ratios are calculated based on the baseline (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document provided by the NCIRT and NCDMS (9/2018). The remainder of the cross-section parameters are calculated based on the current year's low bank height.

Cross-Section Plots



ver Basin:	Yadkin River
e:	Cedar Branch
ID	XS2
ainage Area (sq mi):	0.05
te:	12/13/2022
ld Crew:	TS, KB
Station Elevation	SUMMARY DATA
0.0 686.86	Current Bankfull Elevation: 686.32
0.1 686.19	Bankfull Cross-Sectional Area: 13.4
4.1 686.23	Total Cross-Sectional Area: 9.4
11.7 686.14	Bankfull Width: 13.0
15.6 686.03	Flood Prone Area Elevation:
17.0 685.99	Flood Prone Width:
18.3 685.82	Max Depth at Bankfull: 2.0
20.1 685.52	Mean Depth at Bankfull: 1.0
21.2 685.27	W / D Ratio:
22.1 684.93	Entrenchment Ratio:
22.5 684.73	Bank Height Ratio:
23.2 684.65	
24.2 684.41	
25.3 684.36	Cedar Branch, XS2, Pool, T1
25.9 684.47	688
26.3 684.78	
27.0 685.43	
27.8 685.79	687
28.6 686.03	
31.3 685.95	
34.7 686.00	686
35.8 686.08	
	8
	685
	685 (see)
	0 5 10 15 20 25 30 35
	Station (feet)
	BankfullFlood Prone Area

River Basin: Site: XS ID Drainage Ard Date: Field Crew:		Yadkin River Cedar Branch XS3 0.21 12/13/2022 TS, KB
Station 0.0 0.0 6.1 11.4 14.0 15.5 16.4 17.0 17.7 18.0 19.0 19.6	Elevation 676.77 676.27 676.18 676.23 676.15 676.15 676.17 675.33 675.08 674.35 673.38	SUMMARY DATACurrent Bankfull Elevation:675.95Bankfull Cross-Sectional Area:20.2Total Cross-Sectional Area:21.3Bankfull Width:13.9Flood Prone Area Elevation:Flood Prone Width:Max Depth at Bankfull:3.0Mean Depth at Bankfull:1.5W / D Ratio:Entrenchment Ratio:Bank Height Ratio:
20.4 21.3 22.0 22.9 24.2 24.8 25.2	672.99 673.04 673.25 673.54 674.03 674.41 674.90	Cedar Branch, XS3, Pool, UTCC
25.6 26.5 28.1 30.0 32.4 37.3 42.9 48.2	675.26 675.32 675.73 675.98 675.97 675.98 675.11 676.06	676 675 674 673
48.2	676.76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

iver Basin:		Yadkin River
ite:		Cedar Branch
S ID		XS4
rainage Ar	rea (sq mi):	0.21
ate:		12/13/2022
eld Crew:		TS, KB
Station	Elevation	SUMMARY DATA
0.0	676.15	Current Bankfull Elevation: 675.65
0.0	675.48	Bankfull Cross-Sectional Area: 12.6
5.8	675.68	Total Cross-Sectional Area: 14.5
12.7	675.85	Bankfull Width: 11.9
19.4	675.72	Flood Prone Area Elevation: 677.3
21.8	675.79	Flood Prone Width: 51.8
22.6	675.72	Max Depth at Bankfull: 1.7
23.6	675.66	Mean Depth at Bankfull: 1.1
24.5	675.31	W / D Ratio: 11.3
25.5	674.74	Entrenchment Ratio: 4.3
26.3	674.36	Bank Height Ratio: 1.0
26.8	674.16	
27.4	674.16	
28.4	674.05	Cedar Branch, XS4, Riffle, UTCC
29.3	674.00	678
30.1	674.02	
30.7	674.05	
31.4	674.19	677
32.5	674.36	
33.2 34.8	674.90 675.48	
35.8	675.72	676
35.8	675.84	Elevation (feet)
38.5	675.86	
44.2	675.91	اقِي 675
49.0	676.02	
51.8	676.06	
-		
		0 10 20 30 40 50
		Station (feet)
		BankfullFlood Prone Area

ver Basin:		Y	adkin Riv	ver								
e:		С	edar Bran	ich				Test Marken	NACE AND	NY ALAN		A JANNA
ID		X	S5					local de la	N. CONVERSION	SALVARY DAT		1992
ainage Ar	rea (sq mi):	0.	21					A State	I - CAR CARE	The Zon Life An	A MARKAR STAR	
te:	· - ·	12	2/13/2022						11. SAMAANI	×2/3 5		四、清水出品引
ld Crew:		T	S, KB					CALLER .		ONTU AN	的法律的保持任何	TO TRACT
		•						11/16		AND SEASSE	ALL SALAN PLAN	1 PARA
station	Elevation			SUMMARY DATA	1			111 12 13	a the kitter a start	N. M. Marris	STATING THE	A to be
0.0	663.27			Current Bankfull E	Clevation:		662.97	141-14	Caller - Maria	191 have	5 10 5 5 6	(不同)等了(子)
0.0	662.75			Bankfull Cross-Sec	tional Area:		15.8		A State			
5.2	662.98			Total Cross-Section	nal Area:		15.6				an entry	See 1
10.5	663.11			Bankfull Width:			14.2			VE Statest	Taking to the	
13.4	663.03			Flood Prone Area F	Elevation:		664.8	A DECEMBER OF A	A LOOK ANY	1. La de tra	The age of the	36 11
15.0	663.06			Flood Prone Width			45.3			AST I'M	A THE REAL	AS Sto
15.8	662.84			Max Depth at Bank	cfull:		1.8	A. C. A.	CAR AND	2 Proto	State Barrie	The star
16.3	662.66			Mean Depth at Ban			1.1	and the second	All And	a state of the		
17.6	662.15			W / D Ratio:			12.8	all a line	SKIN SA	A la	A set	ALL PAC
19.2	661.67			Entrenchment Rati			3.2		A LEAS	P. P. AV		
20.1	661.40			Bank Height Ratio:			1.0		A BE WARD	And a start of the	A TOMPOST	and the second
20.8	661.23								1 alt		- DORING C	and said
22.0	661.20											
22.6	661.18						Cedar B	ranch, XS5, Riffle	UTCC			
23.2	661.21		665 —				ecual D		,0100			
23.7	661.26											
24.4	661.32		-									
25.0	661.35		664 -									
25.6	661.69		-									1
27.3	662.21											
28.8 29.8	662.67		663 -									
29.8 30.9	663.10 662.88	eet	F									
35.4	663.06	%	Ę									
40.2	663.23	tion	662						<i>(</i>			
45.2	663.37	Elevation (feet)	-									
45.3	663.74	Ele	(1) F									
			661					~				
			ţ.									
			660									
			000	5	10	15	20	25	30	35	40	45
			0	3	10	15			50	33	40	43
							Ste	ation (feet)				
				Bankfull	Flood Prone	- Area	MY00	MY01	MY02	MY03	MY05	
		1	1									

River Basin: Site:			ıdkin River dar Branch					XNN	
XS ID		XS				13/11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALCONTRACT OF		ALL X
Drainage Ar	ea (sq mi):	0.0)4				N M N	HASTER & VORD	
Date:		12	/13/2022			Var SVI			1. 4
Field Crew:		TS	S, KB				CALT AND	Real of the second	1 Standard
							C Shippers	SHO IN	17 4 M
Station	Elevation		SUMMARY DATA				2 1 Conton		The strain in
0.0	667.87		Current Bankfull Ele	vation:	666.61		S STURATING THE	The second second	and the second second
0.0	667.27		Bankfull Cross-Section	nal Area:	6.9	A CONTRACTOR	N TACE		A BANK
3.2	667.11		Total Cross-Sectional	Area:	6.8			Carlo H. H.	
6.5	666.79		Bankfull Width:		10.2	A all has			100/ 2
9.3	666.78		Flood Prone Area Ele	vation:		A TARAS		11×	11/52 5
10.3	666.63		Flood Prone Width:				治病产		
11.1	666.49		Max Depth at Bankfu		1.6		X	A AND A SEC	
11.9	666.22		Mean Depth at Bank	ull:	0.7			States of States of States	12 2 2
12.5	666.11		W / D Ratio:				POP. WARDS		No VI
13.1	666.00		Entrenchment Ratio:			Contraction in the	A IDAX		S. 💎
13.3	665.74		Bank Height Ratio:						and the s
13.9	665.10								12511
14.4	665.15								
15.3	665.05				Cedar Branch	n, XS7, Pool, T3			
16.0	665.13		669						
16.8	665.75		-						
17.1 17.8	666.12 666.17								
17.8	666.37		668						
20.3	666.57		A						
20.3	666.70								
24.5	666.66		667						
24.3	667.04	eet							
32.0	667.38	u ()							
34.5	667.62	tion	666	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		y			
34.5	668.08	Elevation (feet)	- -						
	<u>. </u>	Ele	665						
			F						
			664 +						
			0 5	10	15	20	25	30	35
			0 5	10			20	50	55
					Station (
			— — – • Bankfull	MY00	MY01	—— MY02	—— MY03	MY05	
l			L						

iver Basin:			Yadkin Riv		
ite:			Cedar Bran	nch	4
S ID			XS8	A STATE OF A	1
rainage Are	ea (sq mi):		0.04		-
ate:			12/13/2022	2	
ield Crew:			TS, KB		2
a					
Station	Elevation			SUMMARY DATA	
0.0	666.80			Current Bankfull Elevation: 666.02	and a second
0.1	666.21			Bankfull Cross-Sectional Area: 2.5	Sp.
3.6	666.09			Total Cross-Sectional Area: 2.0	
6.6	666.09			Bankfull Width: 7.2	
8.5	666.03			Flood Prone Area Elevation: 667.0	
12.4	666.01			Flood Prone Width: 31.2	Y
13.4 14.6	666.00 665.91			Max Depth at Bankfull: 0.9 Mean Depth at Bankfull: 0.4	1
14.6	665.91			Mean Depth at Banktun: 0.4 W / D Ratio: 20.3	
15.4	665.27			Entrenchment Ratio: 4.3	-
15.4	665.11			Bank Height Ratio: 0.9	11
16.3	665.09				
16.7	665.24				
16.9	665.39			Codex Dreamsh VS9 Diffs T2	
17.2	665.50		((0)	Cedar Branch, XS8, Riffle, T3	
18.4	665.77		⁶⁶⁹ F		
18.8	665.81		ţ		
19.8	665.97		668		
21.2	666.07		-		
24.3	666.29		Ę		
28.8	666.67		667		
30.9	666.88	ot	3		
33.0	667.46	(fo.	š 🚺		
34.0	667.61	20	5 666 🗕		
34.1	667.99	Elevation (fast)	i j		
		tol?			
		4	4 665 		
			ŀ		
			cca F		
			664 +	5 10 15 20 25 30 3 ⁴	-
			0		,
				Station (feet)	
				BankfullFlood Prone Area	

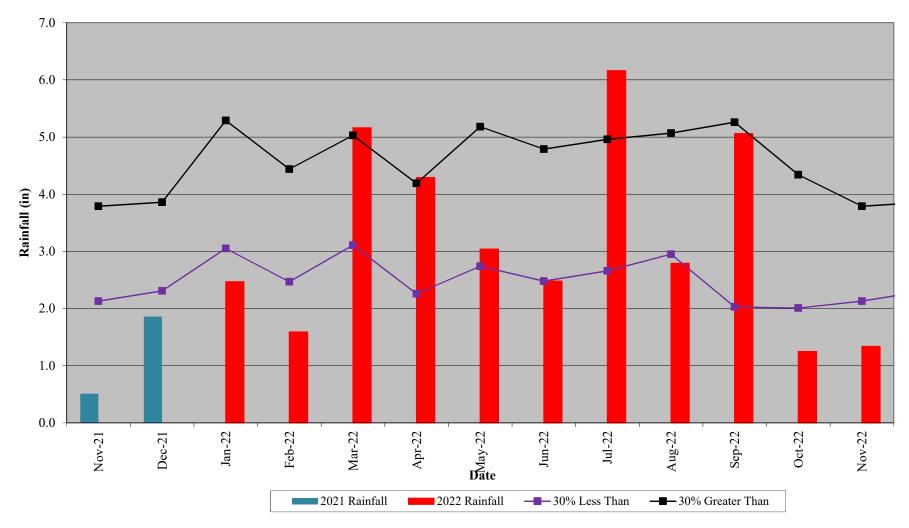
River Basin:			Yadkin Rive									
Site:			Cedar Brand					S S S S S S S S S S S S S S S S S S S				1. 10
XS ID			XS9					ALC AN	R AR BARRAN		語。[#·]]和《《》	
Drainage Area (sq 1	ni)•		0.28						N. C. Station	PERSONAL PROPERTY.	REPAIRS A CAR	Carl Star
Dramage Area (sq 1 Date:	<i>.</i>		12/14/2022						A MARK AN			5 A
Field Crew:			TS, KB					ALLER VELL	A SALAN AND			6 25
Field Crew.			15, KD					North H	1 Martis			1.2
Station Elev	ation			SUMMARY DATA				1 2 3 1	ALL MARKERS	all parts		
	7.89			Current Bankfull El		65	57.36			F CENT		1 3
0.1 65	7.45			Bankfull Cross-Secti	onal Area:		13.0	3 2 1	AL 1722	AR ARCA		
5.0 65	7.41			Total Cross-Sectiona	ll Area:		12.5	的 人们不可能。	THE REAL PROPERTY AND	enter the	West All	
	7.32			Bankfull Width:			14.7	TO A	111 400 400		Standing 10	IS Z
13.0 65	7.35			Flood Prone Area El	evation:	6	59.2		ME ALL	A State		
	7.36			Flood Prone Width:			45.0			A States	Contraction of the second seco	ALL AN
15.4 65	7.27			Max Depth at Bankf	ull:		1.9		P State Party	Sel Sel	Salver Tax	
16.3 65	7.20			Mean Depth at Bank	cfull:		0.9	in the			A Start A CAR	
	5.97			W / D Ratio:			16.5	and the second	State -	and the second second	A Carlo Ana	1
	5.57			Entrenchment Ratio	:		3.1		THE ME	and and		Const.
	5.18			Bank Height Ratio:			1.0	A Participant	- Salaray			- 20 ¹
	5.78											
	5.71											
	5.53						Cedar Bran	ch, XS9, Riffle,	UTCC			
	5.47		660 —				otun bin	••••,••••,•••••,•				
	5.59											
	5.74		-									
	5.82		659									
	5.65		_									
	7.26		-									1.1
	7.67 7.63		658									
		et	Ň									
	7.72 7.68	C										
	7.72	ion	657 —									
44.8 65		Elevation (feet)	F						/			
-15.0 05		Ele	,									
			656					A				
			-									
			(FF -					~				
			655		10	15	20	25	20	25	40	45
			0	5	10	15		25	30	35	40	45
							Statio	n (feet)				
				Bankfull	Flood Prone A	Area —	MY00	MY01	MY02	MY03	MY05	
	1											

River Basin: Site: XS ID Drainage Area (sq mi): Date: Field Crew:		Yadkin River Cedar Branch XS10 0.05 12/14/2022 TS, KB					A Pro	
Station Elevatio 0.0 667.40 0.0 666.96 4.3 667.14 9.1 667.15 11.0 667.18 11.9 667.12 13.0 666.83 13.5 666.73 14.6 666.31 16.0 666.42 17.0 666.64 18.7 666.78 19.0 667.12 20.3 667.10 23.6 667.12 28.2 667.33 35.4 667.41 35.8 667.94	Elevation (feet)	669 667 666 666	l Elevation: ectional Area: ional Area: a Elevation: th: nkfull: ankfull: ankfull:	667.09 3.3 2.2 7.0 667.9 35.7 0.8 0.5 15.0 5.1 1.0 Cedar Bran	ch, XS10, Riffle, T4			
		665	5 10	15	20	25	30	35
					n (feet)			
		Bankfull	Flood Prone Area	MY00	MY01	MY02	MY03 N	1Y05

River Basin: Site: XS ID Drainage Area (sq mi): Date: Field Crew:	Yadkin River Cedar Branch XS11 0.05 12/14/2022 TS, KB
Station Elevation 0.0 657.03 0.1 656.57 4.4 656.69 8.4 656.58 10.6 656.51 12.2 656.20 13.0 656.18 13.6 655.83 14.5 655.26 15.5 654.71 16.6 654.57	SUMMARY DATACurrent Bankfull Elevation:656.39Bankfull Cross-Sectional Area:10.8Total Cross-Sectional Area:12.4Bankfull Width:9.5Flood Prone Area Elevation:Flood Prone Width:Max Depth at Bankfull:1.1W / D Ratio:Bank Height Ratio:
$\begin{array}{c ccccc} 17.0 & 654.51 \\ \hline 18.0 & 654.52 \\ \hline 19.2 & 654.65 \\ \hline 20.0 & 655.37 \\ \hline 20.1 & 655.83 \\ \hline 21.6 & 656.53 \\ \hline 21.8 & 656.64 \\ \hline 22.9 & 656.67 \\ \hline 24.8 & 656.58 \\ \hline 26.5 & 656.57 \\ \hline 29.1 & 656.99 \\ \hline 29.1 & 657.51 \\ \hline \end{array}$	Cedar Branch, XS11, Pool, T4
	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

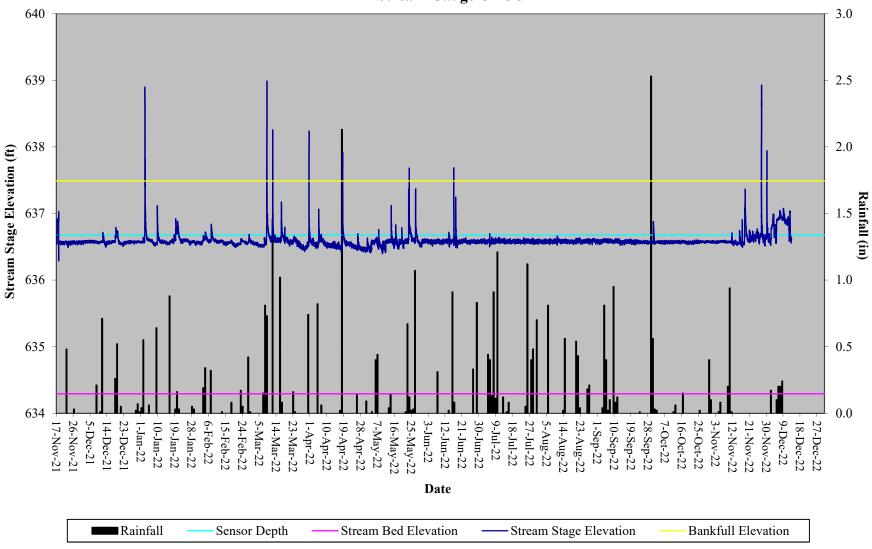
Effect Crea: TS, KB Notion Restation 0.0 656.04 0.0 656.01 0.6 656.01 0.6 656.01 0.6 656.01 0.7 656.01 0.8 656.01 12.2 656.01 12.2 656.01 12.2 656.01 13.7 655.55 14.4 655.55 14.4 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.6 655.31 15.7 656.17 17.9 655.41 16.1 656.23 31.4 656.23 31.4 656.23 31.4 656.23	River Basin: Site: XS ID Drainage Area (sq mi):	Yadkin River Cedar Branch XS12 0.05
Intervention Intervention 0.0 65654 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65650 0.6 65660 0.7 65660 0.8 0.8 <	Date:	12/14/2022
0.0 656.94 0.0 656.90 0.6 656.91 0.6 656.91 0.6 656.91 0.7 656.01 0.8 656.01 0.9 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.2 656.01 0.3 656.01 0.3 656.01 0.3 656.01 0.3 656.01 0.3 655.02 0.3 655.02 0.4 655.02 0.5 10 0.6 655.41 1.6 655.42 1.6 656.21 1.4 656.21 1.4 656.21 1.4 656.21 1.4 656.21 1.4 656.21 1.4 656.21 1.4 656.21 1.4 656.21 <th>Field Crew:</th> <th>TS, KB</th>	Field Crew:	TS, KB
0 5 10 15 20 25 30 <i>Station (feet)</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eurrent Bankfull Elevation: 656.19 Bankfull Cross-Sectional Area: 3.5 Total Cross-Sectional Area: 657.0 Flood Prome Width: 0.5 Width:
		0 5 10 15 20 25 30
Bankfull General Area MY00 MY01 MY02 MY03 MY05		

Station Elevation 0.0 646.09 -0.1 645.72 4.6 645.62 4.6 645.62 12.9 645.62 12.9 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.62 12.9 645.61 13.4 645.62 12.9 645.61 13.4 645.62 12.9 645.60 16.6 645.60 16.6 645.16 22.2 644.63 22.2 644.63 22.2 644.11 22.2 644.12 22.2 644.14 22.2 644.19 22.3 644.19 22.4 644.03 22.5 644.19 25.9 644.19 26.3 644.82	
Drainage Area (sq mi): 0.41 Date: $12/14/2022$ Field Crew: TS, KB Station Elevation 0.0 646.09 -0.1 645.72 4.6 645.62 11.9 645.62 12.9 645.35 13.4 645.35 13.4 645.64 14.5 645.60 15.9 645.60 16.6 645.61 17.8 645.15 18.6 645.16 22.2 644.30 22.2 644.30 22.2 644.04 22.1 644.04 22.1 644.28	
Station Elevation 0.0 646.09 -0.1 645.72 4.6 645.62 8.3 645.62 12.9 645.39 12.9 645.35 13.4 645.35 13.4 645.46 14.5 645.62 15.9 645.60 17.7 15.9 16.6 645.46 17.8 645.15 18.6 645.16 20.5 644.50 21.7 644.50 22.9 644.11 23.4 644.04 25.1 644.28	
Station Elevation 0.0 646.09 0.1 645.72 4.6 645.66 4.5 645.62 11.9 645.62 12.9 645.39 13.4 645.35 13.4 645.64 14.5 645.64 11.9 645.64 12.9 645.35 13.4 645.35 13.4 645.64 14.5 645.64 17.8 645.64 17.8 645.16 20.5 644.63 22.2 644.27 22.2 644.03 22.2 644.04 22.1 644.04 25.1 644.04	
Station Elevation 0.0 646.09 -0.1 645.72 4.6 645.66 8.3 645.62 11.9 645.62 11.9 645.62 11.9 645.39 11.9 645.39 11.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.15 16.6 645.46 20.5 644.63 21.7 644.53 22.9 644.11 23.4 644.05 24.6 644.05 24.6 <t< th=""><th></th></t<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-0.1 645.72 4.6 645.66 8.3 645.62 11.9 645.62 12.9 645.39 13.4 645.35 13.4 645.35 13.4 645.36 14.1 645.36 15.9 645.60 16.6 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.03 22.1 644.04 25.1 644.28	
4.6 645.66 8.3 645.62 11.9 645.62 12.9 645.39 12.9 645.39 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 14.5 645.64 17.7 14.5 16.6 645.36 17.7 645.60 16.6 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.03 24.1 644.05 24.6 644.04 25.1 644.28	
8.3 645.62 11.9 645.62 12.9 645.39 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 13.4 645.35 14.1 645.35 14.5 645.60 16.6 645.46 17.7 $Entrenchment Ratio: 17.8 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.05 24.6 644.04 25.1 644.28$	
8.3 645.62 11.9 645.62 12.9 645.39 13.4 645.35 13.4 645.35 14.1 645.36 15.9 645.60 16.6 645.46 17.8 645.15 18.6 645.16 20.5 644.63 21.7 644.50 22.9 644.11 23.4 644.03 24.1 644.05 24.6 644.04 25.1 644.28	
11.9 645.62 12.9 645.39 13.4 645.35 13.4 645.35 13.4 645.35 14.1 645.35 14.5 645.64 14.5 645.64 14.5 645.64 15.9 645.60 16.6 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.05 24.6 644.04 25.1 644.28	
12.9 645.39 13.4 645.35 14.1 645.35 14.1 645.35 14.5 645.64 14.5 645.64 15.9 645.60 16.6 645.46 17.8 645.15 18.6 645.16 20.5 644.63 22.2 644.27 22.9 644.12 22.9 644.03 22.9 644.03 $22.4.6$ 644.04 25.1 644.28	
14.1 645.35 14.5 645.64 15.9 645.60 16.6 645.46 17.8 645.16 17.8 645.16 17.8 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.05 24.1 644.05 24.6 644.04 25.1 644.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
15.9 645.60 16.6 645.46 17.8 645.15 18.6 645.16 20.5 644.63 21.7 644.50 22.2 644.27 22.9 644.11 23.4 644.03 24.1 644.05 25.1 644.28	
16.6 645.46 17.8 645.15 18.6 645.16 20.5 644.63 21.7 644.50 22.2 644.11 23.4 644.03 24.1 644.03 24.1 644.03 25.1 644.28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
20.5 644.63 Cedar 21.7 644.50 648 648 22.2 644.27 644.03 644.03 22.9 644.05 647 647 24.1 644.05 646 646 25.1 644.28 646 646	
21.7 644.50 Cedar 22.2 644.27 648 648 22.9 644.11 647 647 23.4 644.05 647 647 24.1 644.28 646 646	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ranch, XS13, Riffle, UTCC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	raici, ASIS, Kille, UTCC
23.4 644.03 24.1 644.05 24.6 644.04 25.1 644.28	
24.1 644.05 24.6 644.04 25.1 644.28	
24.1 644.05 24.6 644.04 25.1 644.28	
25.1 644.28 646	
040	
25.9 644.19 26.3 644.82	
26.3 644.82	
28.1 645.20	
<u>29.6 645.48</u>	
30.4 645.82	
644 +	
40.4 645.99	
45.4 646.21	\sim
	Ť l
48.5 646.72 0 5 10 15 20	· · · · · · · · · · · · · · · · · · ·
	25 30 35 40 45
Bankfull Flood Prone Area MY00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


iver Basin:		Yadkin River								
ite:		Cedar Branch						A ANTAL MAR	A. C. S. A. A.	CALL AND
5 ID		XS14					STATES IN STATE	CAN DE BARRE	1/ A BAR	MARKED AND
ainage Ar	ea (sq mi):	0.41					A TANGLE		P 1 SALANA	
te:		12/14/2022					Self Self	N/ Bran Alle		Here A ALLAND
eld Crew:		TS, KB					N PARKA	AS ST PARA	a series with	Charles Internet
								A 11/2 1/2 1/2	Engline Martin	
Station	Elevation		SUMMARY DATA							
0.0	638.84		Current Bankfull Elev	vation:	638.02		Marilla - P. V.A.	Ser Port	- and the lot	
0.2	638.52		Bankfull Cross-Section	nal Area:	12.8		APPEAL RE	N. A.	and the second	
4.5	638.50		Total Cross-Sectional	Area:	11.7		NEAL X	and the second		
8.2	638.36		Bankfull Width:		14.0	1		and the set	The second second	
11.8	638.36		Flood Prone Area Ele	vation:	639.7	7	大名 林志林	KINY 74	and the second of	The second second
12.7	638.37		Flood Prone Width:		43.7	7				and the second second
13.6	638.21		Max Depth at Bankfu	11:	1.7	1		SALLA	and the second	A CONTRACTOR
15.3	637.90		Mean Depth at Bankf		0.9	1			1 Stan	
16.7	637.67		W / D Ratio:		15.3				A	
17.9	637.24		Entrenchment Ratio:		3.1		1 Mills	Soll - 1 - 1		14 Mar 128
18.1	636.99		Bank Height Ratio:		1.2		I WINAS	ANA VAL	and a start of	AND STOP
19.1	636.56									
19.9	636.56									
20.3	636.44				C	dar Branch	XS14, Riffle, U	UTCC		
21.6	636.44	640				uai branch,	7.51 4 , Kille, C			
22.1	636.46	040								
22.8	636.66									_
23.1	636.84									
23.6	636.83	639								
23.9	636.95									
24.9	637.42									
25.2	637.56									
27.2	638.07	638 637 637								
29.1	638.42	uo						/		
30.4	638.41	, ati								
34.8 39.9	638.50 638.49	637								
43.4	638.49	ч								
43.4	639.05				X					
43./	039.03						\sim			
		636								
		0	5	10	15	20	25	30	35	40
						Station (fe	eet)			
			– – – • Bankfull	Flood Prone Ar	ea MY0		- MY01 -	MY02	—— MY03	MY05
			- Dunktun					111102		

River Basin: Site: XS ID Drainage Area (sq mi): Date:	Yadkin River Cedar Branch XS15 0.41 12/14/2022
Station Elevation 0.0 638.15 -0.1 637.87 6.1 637.52 9.5 637.84 11.6 637.68 12.5 637.77 13.1 637.69 14.4 636.98 15.7 635.96 16.8 635.35 18.1 634.58 19.1 634.72	TS, KB SUMMARY DATA Current Bankfull Elevation: Current Bankfull Elevation: Total Cross-Sectional Area: 33.3 Bankfull Width: Flood Prone Area Elevation: Flood Prone Vidth: Max Depth at Bankfull: 1.7 W / D Ratio: Entrenchment Ratio: Image: Depth at Bankfull: 1.7 W / D Ratio:
20.3 634.58 22.5 634.73 23.6 635.03 24.7 635.43 25.6 636.04 28.7 636.68 31.3 637.10 33.6 637.67 34.6 637.68 37.3 637.80 42.5 637.75 49.0 637.75 49.2 638.31	Cedar Branch, XS15, Pool, UTCC
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

APPENDIX E


Hydrologic Data

Cedar Branch Restoration Site 30-70 Percentile Graph WETS Station Name: Asheboro, NC

	Table 10. Verification of Bankfull Events Cedar Branch Restoration Site, DMS Project #97009									
Gage ID	MY1	MY2	MY3	MY4	MY5	MY6	MY7			
Gage ID	2018	2019	2020	2021	2022	2023	2024			
UTCC	5	15	17	9	8					

Cedar Branch Restoration Site Hydrograph Stream Gauge UTCC

	Table 11. Verification of Stream FlowCedar Branch Restoration Site, DMS Project #97009										
	Gauge Camera										
Reach	Dates Achieving	Maximum Consecutive Days	Dates Achieving	Maximum Consecutive Days							
T1	N/A	3	Janaury1 – February 18; March 7 – July 31	147							
T1-1	N/A	17	January 10 – May 4	115							
T3	April 22 – June 9	49	February 10 – August 2	173							

Table 12. Stream Flow Criteria Attainment Cedar Branch Restoration Site, DMS Project #97009												
	Greater than 30 Days of Flow/Max Consecutive Days											
Reach	MY-01 2018	MY-02 2019	MY-03 2020	MY-04 2021	MY-05 2022	MY-06 2023	MY-07 2024					
T1 (Gauge)	Yes/60	Yes/46	Yes/142	Yes/242	No/3							
T1 (Camera)	Yes/102	Yes/260	Yes/189	Yes/178	Yes/147							
T1-1 (Gauge)	No/16	Yes/66	Yes/65	Yes/87	No/17							
T1-1 (Camera)	No/7*	Yes/105	Yes/63	No/7*	Yes/115							
T3 (Gauge)	Yes/83	Yes/187	Yes/65	Yes/86	Yes/49							
T3 (Camera)	Yes/93	Yes/252	Yes/174	Yes/61	Yes/173							

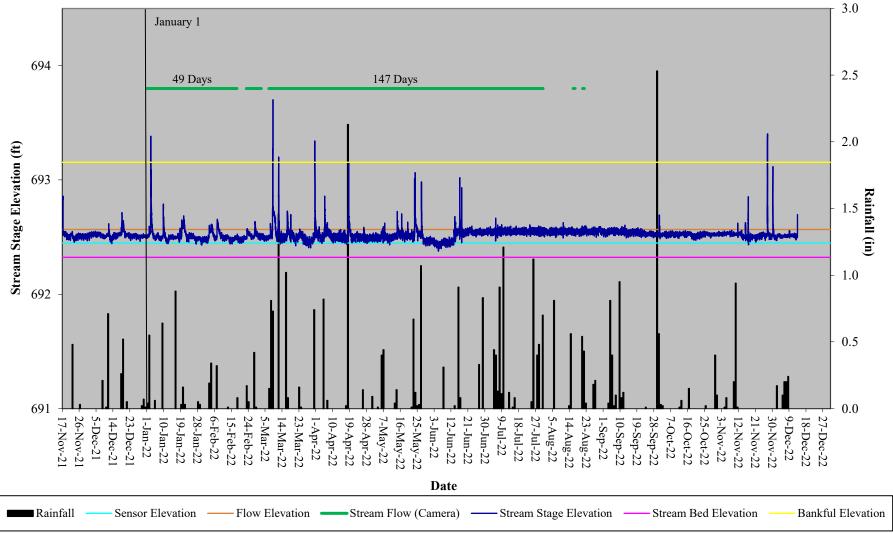
*camera malfunction

T1-4/10/2022

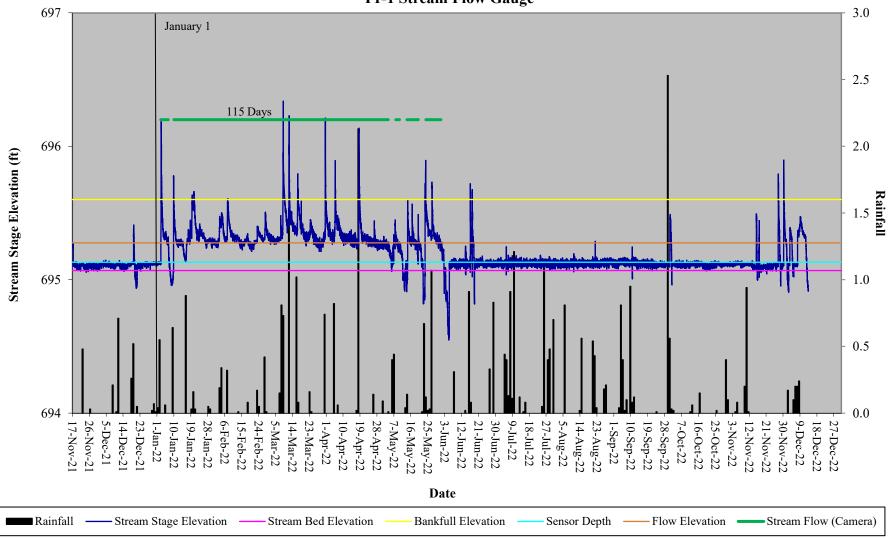
T1-1-3/2/2022

T3 - 2/10/2022

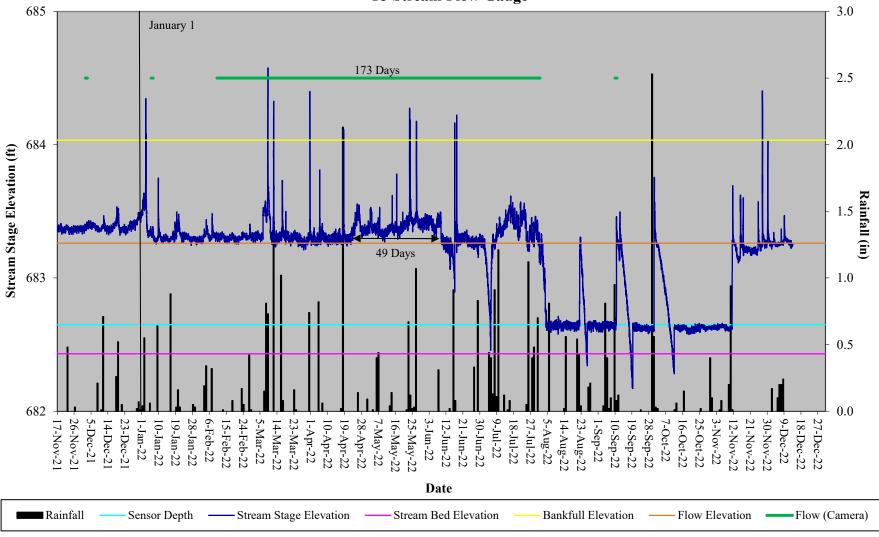
T1 - 7/9/2022



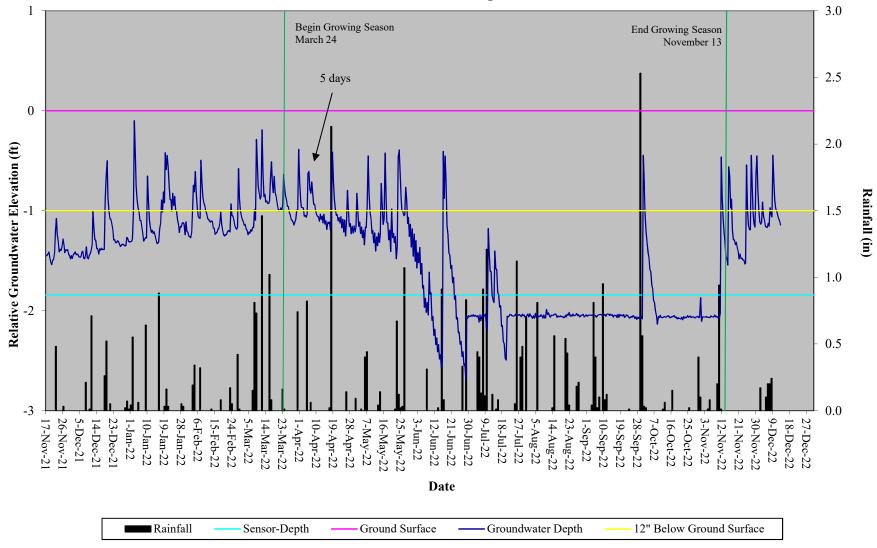
T1-1-4/14/2020



T3 - 4/13/2022


Cedar Branch Restoration Site Hydrograph T1 Stream Flow Gauge

Cedar Branch Restoration Site Hydrograph T1-1 Stream Flow Gauge



Cedar Branch Restoration Site Hydrograph T3 Stream Flow Gauge

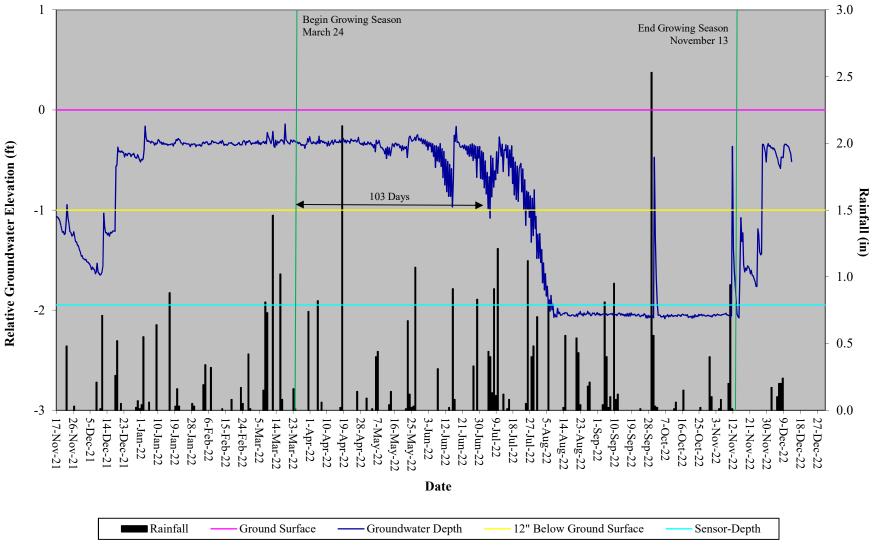
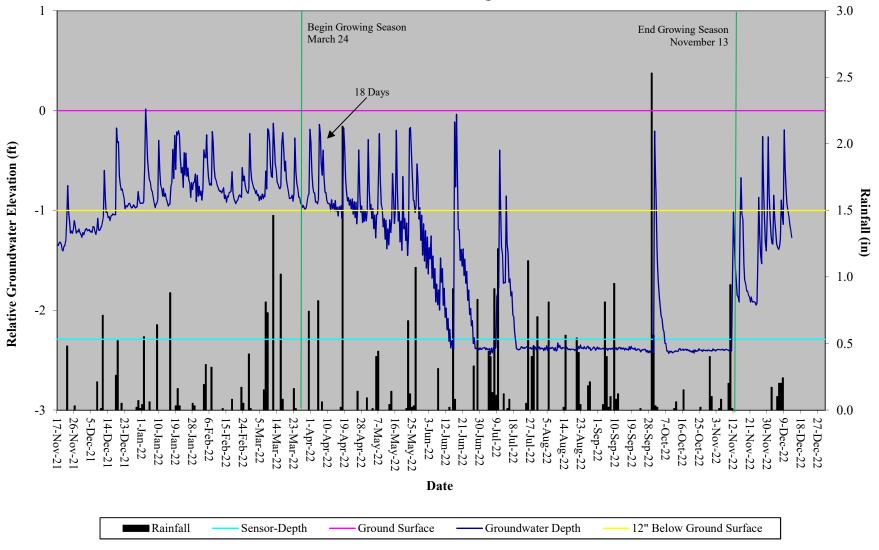


Table 13. Wetland Hydrology VerificationCedar Branch Restoration Site, DMS Project #97009												
Max Consecutive Days During Growing Season (Percentage)												
Gauge #	Location	MY-01 2018	MY-02 2019	MY-03 2020	MY-04 2021	MY-05 2022	MY-06 2023	MY-07 2024				
Gauge 1	T1	64 (27.4%)	63 (26.7%)	55 (23.3%)	57 (24.1%)	3 (1.9%)						
Gauge 2	Т3	104 (44.4%)	148 (63.2%)	119 (50.9%)	65 (27.6%)	103 (44.0%)						
Gauge 3	Т3	21 (9.0%)	26 (10.9%)	13 (5.3%)	21 (9.0%)	18 (7.7%)						


Cedar Branch Restoration Site Hydrograph Wetland Gauge 1

Cedar BranchRestoration Site Hydrograph Wetland Gauge 2

Cedar Branch Restoration Site Hydrograph Wetland Gauge 3

